Skip to main content
Log in

Modeling the enzymatic hydrolysis of dilute-acid pretreated Douglas Fir

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glucose yield from the enzymatic hydrolysis of cellulose was investigated as a function of cellulase enzyme loading (7–36 filter paper units [FPU]/g cellulose) and solids concentration (7–18% total solids) for up to 72 h on dilute sulfuric-acid pretreated Douglas Fir. The saccharification was performed on whole hydrolysate with no separation or washing of the solids. Enzyme loading had a significant effect on glucose yield; solids concentration had a much smaller effect even at higher glucose concentrations. The data were used to generate an empirical model for glucose yield, and to fit parameters of a cellulose hydrolysis kinetic model. Both models could be used for economic evaluation of a separate hydrolysis and fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schell, D. J., McMillan, J. D., Philippidis, G. P., Hinman, N. D., and Riley, C. (1992), in Advances in Solar Energy, vol. 7, Boer, K. W., ed., American Solar Energy Society, Boulder, CO, pp. 373–448.

    Google Scholar 

  2. Takagi, S. N., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977), in Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein, Ghose, T. K., ed., Indian Institute of Technology, Dehli, India, pp. 551–571.

    Google Scholar 

  3. Becker, D. K., Blotkamp, P. J., and Emert, G. H. (1981), in Fuels from Biomass and Waste, Klass, D. L. and Emert, G. H., eds., Ann Arbor Science, Ann Arbor, MI, pp. 375–392.

    Google Scholar 

  4. Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1988), Appl. Biochem. Biotechnol. 17, 279–293.

    CAS  Google Scholar 

  5. Szczodrak, J. (1989), Biotechnol. Bioeng. 33, 1112–1116.

    Article  CAS  Google Scholar 

  6. Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 24/25, 275–286.

    Google Scholar 

  7. Ekland, R. and Zacchi, G. (1995), Enzyme Microb. Technol. 17, 255–259.

    Article  Google Scholar 

  8. McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, NY, pp. 411–437.

    Google Scholar 

  9. Mandels, M., Hontz, L., and Nystrom, J. (1974), Biotech. Bioeng. 16, 1471–1493.

    Article  CAS  Google Scholar 

  10. Schwald, W., Breuil, C., Brownell, H. H., Chan, M., and Saddler, J. N. (1989) Appl. Biochem. Biotechnol. 20/21, 29–44.

    Article  Google Scholar 

  11. Patrick Lee, K. C., Bulls, M., Holmes, J., and Barrier, J. W. (1997), Appl. Biochem. Biotechnol. 66, 1–23.

    Google Scholar 

  12. Ekland, R. and Zacchi, G. (1995), Enzyme Microb. Technol. 17, 255–259.

    Article  Google Scholar 

  13. Vlasenko, E. Yu., Ding, H., Labavitch, J. M., and Shoemaker, S. P. (1997), Biores. Technol. 59, 109–119.

    Article  CAS  Google Scholar 

  14. Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., and Latimer, V. M. (1996), Biores. Technol. 56, 111–119.

    Article  CAS  Google Scholar 

  15. Philippidis, G. P., Spindler, D. D., and Wyman, C. E. (1992), Appl. Biochem. Biotechnol. 34/35, 543–556.

    Google Scholar 

  16. Philippidis, G. P. (1996), in Handbook on Bioethnanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis: Washington, DC, pp. 253–285.

    Google Scholar 

  17. Philippidis, G. P. and Hatzis, C. (1997), Biotechnol. Prog. 13, 222–231.

    Article  CAS  Google Scholar 

  18. Philippidis, G. P., Smith, T. K., and Wyman, C. E. (1993), Biotechnol. Bioeng. 41, 846–853.

    Article  CAS  Google Scholar 

  19. Nutor, J. R. and Converse, A. O. (1991), Appl. Biochem. Biotechnol. 28/29, 757–772.

    Google Scholar 

  20. Converse, A. O. (1993), in Bioconversion of Forest and Agricultural Residues, Saddler, J. N., ed. CAB International, Oxon, UK, pp. 93–106.

    Google Scholar 

  21. South, C. R., Hogsett, A. L., and Lynd, L. R. (1995), Enzyme Microb. Technol. 17, 797–803.

    Article  CAS  Google Scholar 

  22. Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol., in press.

  23. Vinzant, T. B., Ponfick, L., Nagle, N. J., Ehrman, C. I., Reynolds, J. B., and Himmel, M. E. (1994), Appl. Biochem. Biotechnol. 45/46, 611–626.

    Article  Google Scholar 

  24. Fengel, D. and Wegener, D. (1983), Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany.

    Google Scholar 

  25. Wright, J. (1988), Chem. Eng. Prog. 84(8), 62–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Schell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, D.J., Ruth, M.F. & Tucker, M.P. Modeling the enzymatic hydrolysis of dilute-acid pretreated Douglas Fir. Appl Biochem Biotechnol 77, 67–81 (1999). https://doi.org/10.1385/ABAB:77:1-3:67

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:77:1-3:67

Index Entries

Navigation