Skip to main content
Log in

Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study describes different detoxification methods to improve both cell growth and ethanol production by Baker's yeast, Saccharomyces cerevisiae. A dilute-acid hydrolyzate of spruce was used for the all detoxification methods tested. The changes in the concentrations of fermentable sugars and three groups of inhibitory compounds—aliphatic acids, furan derivatives, and phenolic compounds—were determined and the fermentability of the detoxified hydrolyzate was assayed. The applied detoxification methods included: treatment with alkali (sodium hydroxide or calcium hydroxide); treatment with sulfite (0.1% [w/v] or 1% [w/v] at pH 5.5 or 10); evaporation of 10% or 90% of the initial volume; anion exchange (at pH 5.5 or 10); enzymatic detoxification with the phenoloxidase laccase; and detoxification with the filamentous fungus Trichoderma reesei. An ion exchange at pH 5.5 or 10, treatment with laccase, treatment with calcium hydroxide, and treatment with T. reesei were the most efficient detoxification methods. Evaporation of 10% of the initial volume and treatment with 0.1% sulfite were the least efficient detoxification methods. Treatment with laccase was the only detoxification method that specifically removed only one group of the inhibitors, namely phenolic compounds. Anion exchange at pH 10 was the most efficient method for removing all three major groups of inhibitory compounds; however, it also resulted in loss of fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olsson, L. and Hahn-Hägerdal, B. (1996), Enzyme Microb. Technol. 18, 312–331.

    Article  CAS  Google Scholar 

  2. vonSivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B. (1994), Biotechnol. Prog. 10, 555–560.

    Article  Google Scholar 

  3. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., and Stenberg, K. Enzyme Microb. Technol., in press.

  4. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochem. Biotechnol. 70/72, 3–15.

    Article  Google Scholar 

  5. Saeman, J. F. (1945), Ind. Eng. Chem. 37(1), 43–52.

    Article  CAS  Google Scholar 

  6. Fan, L. T., Lee, Y.-H., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. Biotechnol. 23, 158–187.

    Google Scholar 

  7. Villa, G. P., Bartroli, R., López, R., Guerra, M., Enrique, M., Penas, M. Rodríquez, E., Redondo, D., Iglesias, I., Díaz, M., et al. (1992), Acta Biotechnol. 12, 509–512.

    Article  CAS  Google Scholar 

  8. Palmqvist, E. (1998), PhD thesis, Lund University/Lund Institute of Technology, Lund, Sweden.

  9. Chung, I. S. and Lee, Y. Y. (1984), Biotechnol. Bioeng. 27, 308–315.

    Article  Google Scholar 

  10. Pampulha, M. E. and Lourero-Dias, M. C. (1989), Appl. Microbiol. Biotechnol. 31, 547–550.

    Article  CAS  Google Scholar 

  11. Verdyn, C., Postma, E., Scheffers, A. W., and van Dijken, J. P. (1990), J. Gen. Microbiol. 136, 405–412.

    Google Scholar 

  12. Maiorella, B., Blanch, H. W., and Wilke, C. R. (1983), Biotechnol. Bioeng. 25, 103–121

    Article  CAS  Google Scholar 

  13. Verdyn, C., Postma, E., Scheffers, A. W., and van Dijken, J. P. (1990), J. Gen. Microbiol. 136, 395–403.

    Google Scholar 

  14. Russel, J. B. (1992), J. Appl. Bacteriol. 73, 363–370.

    Google Scholar 

  15. Clark, T. A. and Mackie, K. L. (1984), J. Chem. Tech. Biotechnol. 34(B), 101–110.

    Google Scholar 

  16. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64(6), 567–570.

    Article  CAS  Google Scholar 

  17. Jönsson, L. J., Palmqvist, E., Nilvebrant, N. O., and Hahn-Hägerdal, B. (1998), Appl. Microbiol. Biotechnol. 49(6), 691–697.

    Article  Google Scholar 

  18. Palmqvist, E., Grage, H., Meinander, N.Q., and Hahn-Hägerdal, B. Biotechnol. Bioeng., in press.

  19. Van Zyl, C., Prior, B. A., and Du Preez, J. C. (1988), Appl. Biochem. Biotechnol. 17, 357–369.

    Google Scholar 

  20. Leonard, R. H. and Hajny, G. J. (1945), Ind. Eng. Chem. 37, 390–395.

    Article  CAS  Google Scholar 

  21. Hajny, G. J. (1981). ReportNoFPL 385, USDA, Forest Products Laboratory, Madison, WI.

  22. Maddox, I. S. and Murray, A. E. (1983), Biotechnol. Lett. 5(3), 175–178.

    Article  CAS  Google Scholar 

  23. Parajó, J. C., Dominguez, H., and Domínguez, J. M. (1997), Enzyme Microb. Technol. 21, 18–24.

    Article  Google Scholar 

  24. Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., and réczey, K. (1997), Enzyme Microb. Technol. 20, 286–293.

    Article  CAS  Google Scholar 

  25. Amartey, S. and Jeffries, T. (1996), World J. Microbiol. Biotechnol. 12, 281–283.

    Article  CAS  Google Scholar 

  26. Taherzadeh, M.J., Eklund, R., Gustaffson, L., Niklasson, C., and Lidén, G. (1997), Ind. Eng. Chem. Res. 36(11), 4659–4665.

    Article  CAS  Google Scholar 

  27. Graham, H. D. (1992), J. Agric. Food Chem. 40, 801–805.

    Article  CAS  Google Scholar 

  28. Perego, P., Converti, A., Palazzi, E., Del Borghi, M., and Ferraiolo, G. (1990), J. Ind. Microbiol. 6, 157–164.

    Article  CAS  Google Scholar 

  29. Olsson, L., Hahn-Hägerdal, B., and Zacchi, G. (1995), Biotechnol. Bioeng. 45, 356–365.

    Article  CAS  Google Scholar 

  30. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 470–476.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif J. Jönsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, S., Reimann, A., Nilvebrant, NO. et al. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77, 91–103 (1999). https://doi.org/10.1385/ABAB:77:1-3:91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:77:1-3:91

Index Entries

Navigation