Skip to main content
Log in

Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solid-state fermentation (SSF) of inedible parts of rapeseed was carried out using a white-rot fungus, Pleurotus ostreatus, to degrade lignocellulosic material for mycelial-single cell protein (SCP) production. This SSF system has the potential to be adapted to a controlled ecological life support system in space travel owing to the lack of storage space. The system for converting lignocellulosic material to SCP by P. ostreatus is simple; it can be carried out in a compact reactor. The fungal vegetative growth was better with a particle size of plant material ranging from 0.42 to 10 mm, whereas lignin degradation of the lignocellulose was the highest with particle sizes ranging from 0.42 to 0.84 mm. The addition of veratry alcohol (3,4-dimethoxybenzyl alcohol), hydrogen peroxide, and glycerol promotes lignocellulose degradation by P. ostreatus. The enhancement of bioconversion was also observed when a gas-flow bioreactor was used to supply oxygen and to maintain the constant moisture of the reactor. With this reactor, approx 85% of the material was converted to fungal and other types of biomass after 60 d of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarikaya, A. and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 62, 131–149.

    PubMed  CAS  Google Scholar 

  2. Mitchell, C. A. (1994), Am. J. Clin. Nutr. 60, 820S-824S.

    PubMed  CAS  Google Scholar 

  3. Kohlmann, K. L., Sarikaya, A., Westgate, P. J., Weil, J., Velayudhan, A., Hendrickson, R., and Ladisch, M. R. (1995), in Enzymatic Degradation of Insoluble Polymers, vol. 618, Saddler, J. N. and Penner, M. H., eds., ACS Symposium Series, American Chemical Society, Washington, DC, p. 237.

    Google Scholar 

  4. Leisola, M. S. A. and Fiechter, A. (1985), in Advances in Biotechnological Processes, vol. 5, Mizrahi, A. and van Wezel, A. L., eds., Alan Liss Inc., New York, 59–89.

    Google Scholar 

  5. Kirk, T. K. and Farrell, R. L. (1987), Annu. Rev. Microbiol. 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  6. Blanchette, R. A., Otjen, L., Effland, M. J., and Eslyn, W. E. (1985), Wood Sci. Technol. 19, 35–46.

    Article  CAS  Google Scholar 

  7. Reid, I. D. (1983), Appl. Environ. Microbiol. 45(3), 830–837.

    PubMed  CAS  Google Scholar 

  8. Zadrazil, F. (1980), Eur. J. Appl. Microbial. Biotechnol. 9, 243–248.

    Article  CAS  Google Scholar 

  9. Agosin, E. and Odier, E. (1985), Appl. Microbial. Biotechnol. 21, 397–403.

    Article  CAS  Google Scholar 

  10. Peterson, G. R. and Baresi, L. (1990), in Advanced Environmental/Thermal Control and Life Support Systems SP-831, 901282, Society of Automotive Engineers, Warrendale, PA, pp. 89–100.

    Google Scholar 

  11. Agosin, E., Tollier, M. T., Brillouet, J. M., Thivend, P., and Odier, E. (1986), J. Sci. Food Agric. 37, 97–106.

    Article  CAS  Google Scholar 

  12. Hatakka, A. J. (1983), Eur. J. Appl. Microbiol. Biotechnol. 18, 350–357.

    Article  CAS  Google Scholar 

  13. Reid, I. D. (1989), Enzyme Microb. Technol. 11, 786–803.

    Article  CAS  Google Scholar 

  14. Hudson, H. J. (1986), in Fungal Biology, Willis, A. J. and Sleigh, M. A., eds., Edward Arnold, New York, pp. 84–109.

    Google Scholar 

  15. Buswell, J. A. (1991), in Handbook of Applied Mycology of Soils and Plants, Arora, D. K., Muterjl, K. G., and Knudson, G. R., eds., Marcell Dekker, New York, pp. 425–480.

    Google Scholar 

  16. Kaneshiro, T. (1977), Dev. Ind. Microbiol. 18, 591–597.

    Google Scholar 

  17. Lindenfelser, L. A., Detroy, R. W., Ramstack, J. M., and Worden, K. A. (1979), Dev. Ind. Microbiol. 20, 541–551.

    Google Scholar 

  18. Popp, J. L., Kalyanaraman, B., and Kirk, T. K. (1990), Biochemistry 29, 10,475–10,480.

    Article  CAS  Google Scholar 

  19. Sarikaya, A. and Ladisch, M. R. (1997), Appl. Biochem. Biotechnol. 62, 71–85.

    CAS  Google Scholar 

  20. Helrich, K., ed. (1990), Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed., AOAC International, Arlington, VA.

    Google Scholar 

  21. Goering, H. K. and Van Soest, P. J. (1970), in Agricultural Handbook, no. 379, jacket no. 387–598, Agricultural Research Service, U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  22. Van Soest, P. J. and Wine, R. H. (1967), J. Assoc. Off. Anal. Chem. 50, 50.

    Google Scholar 

  23. Van Soest, P. J. and Wine, R. H. (1968), J. Assoc. Off. Anal. Chem. 54, 780–785.

    Google Scholar 

  24. Kohlmann, K. L., Westgate, P. J., Weil, J., and Ladisch, M. R. (1993), SAE Technical Paper Series, 932251.

  25. Ladisch, M. R. (1989), in Biomass Handbook, Kitani, O. and Hall, C. W., eds., Gordon & Breach, London, p. 434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ladisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarikaya, A., Ladisch, M.R. Solid-state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus . Appl Biochem Biotechnol 82, 1–15 (1999). https://doi.org/10.1385/ABAB:82:1:1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:82:1:1

Index Entries

Navigation