Skip to main content
Log in

Dilute-acid hydrolysis of sugarcane bagasse at varying conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse, a byproduct of the cane sugar industry, is an abundant source of hemicellulose that could be hydrolyzed to yield a fermentation feedstock for the production of fuel ethanol and chemicals. The effects of sulfuric acid concentration, temperature, time, and dry matter concentration on hemicellulose hydrolysis were studied with a 20-L batch hydrolysis reactor using a statistical experimental design. Even at less severe conditions considerable amounts (>29%) of the hemicellulose fraction could be extracted. The percentage of soluble oligosaccharides becomes very low in experiments with high yields in monosaccharides, which indicates that the cellulose fraction is only slightly affected. For the sugar yields, acid concentration appears to be the most important parameter, while for the formation of sugar degradation products, temperature shows the highest impact. It could be demonstrated that the dry matter concentration in the reaction slurry has a negative effect on the xylose yield that can be compensated by higher concentrations of sulfuric acid owing to a positive interaction between acid concentration and dry matter contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parisi, F. (1989), Adv. Biochem. Eng./Biotechnol. 38, 51–87.

    Google Scholar 

  2. Grohmann, K., Torget, R., and Himmel M. (1985), Biotech. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  3. Grethlein, H. E. and Converse, A. O. (1991), Bioresour. Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  4. Tucker, M. P., Farmer, J. D., Keller, F. A., Schell, D. J., and Nguyen, Q. A. (1998), Appl. Biochem. Biotechnol. 70–72, 25–35.

    Google Scholar 

  5. Magee, R. J. and Kosaric, N. (1985), Adv. Biochem. Eng./Biotechnol. 32, 61–93.

    CAS  Google Scholar 

  6. Kuhad, R. C. and Singh, A. (1993), Crit. Rev. Biotechnol. 13(2), 151–172.

    CAS  Google Scholar 

  7. San Martin, R., Bushell, D., Leak, D. J., and Hartley, B. S. (1994), Biotechnol. Bioeng. 44, 12–28.

    Article  Google Scholar 

  8. Danner, H., Madzingaidzo, L., Hartl A., and Braun, R. (1998), in Proceedings of the 10 th European Conference Biomass for Energy and Industry, Kopetz, H., Weber, T., Palz, W., Chartier, P., and Ferrero, G. L., eds., C.A.R.M.E.N., Rimpar, Wùrzburg, Germany, pp. 446–449.

    Google Scholar 

  9. Pandey, A., Soccol, C. R., Nigam, P., and Soccol, V. T. (2000), Bioresour. Technol. 74, 69–80.

    Article  CAS  Google Scholar 

  10. Jacobsen, S. E. and Wyman, C. E. (2000), Appl. Biochem. Biotechnol. 84–86, 81–96.

    Article  Google Scholar 

  11. Palmquist, E., Grage, H., Meinander, N. Q., and Hahn-Hägerdal, B. (1999), Biotechnol. Bioeng. 63, 46–55.

    Article  Google Scholar 

  12. TAPPI, Technical Association of the Pulp and Paper Industry (1985), Carbohydrate Composition of Extractive-Free Wood and Wood Pulp by Gas Liquid Chromatography, TAPPI Test Methods, T249 cm-85, TAPPI, Atlanta, GA.

    Google Scholar 

  13. Effland, M. J. (1977), Tappi 60(10), 143,144.

    CAS  Google Scholar 

  14. Garrote, G., Dominguez, H., and Parajo, J. C. (1999), J. Chem. Technol. 74, 1101–1109.

    Article  CAS  Google Scholar 

  15. Shevchenko, S. M., Chang, K., Robinson, J., and Saddler, J. N. (2000), Bioresour. Technol. 72, 207–211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Danner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neureiter, M., Danner, H., Thomasser, C. et al. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98, 49–58 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:49

Index Entries

Navigation