Skip to main content
Log in

Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico

Considerations for human health effects

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The “chocolate clam” Megapitaria squalida, is widely consumed by the population of several localities along the Pacific coast. Clams collected from seven stations in Bahía de la Paz, a bay within the Gulf of California, before and after the summer rainy season were analyzed for Pb, Ni, Cd, Mn, Zn, Cu, and Fe. The location of the sampling sites significantly affected the concentration of metals in clam tissues, but not in relation to the proximity to alleged contaminated sites. Clams from a site close to a phosphate mine had the highest levels of Pb, but only in April, and the highest concentrations of Cd were recorded in clams collected in areas with no anthropogenic activities. Clams from sites considered clean had higher levels of Cd, Fe, Zn, and Mn. The mean concentrations (μg/g dry weight) ranged from 0.1 to 7.8 for Pb, from 1.9 to 8.8 for Ni, from 1.5 to 11.1 for Cd, from 2.5 to 14.1 for Mn, from 47.2 to 64.6 for Zn, from 5.4 to 18.7 for Cu, and from 154 to 558 for Fe. Collecting clams in sites apparently pristine is no guarantee that metals will be in low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Bat, A. Gündogdu, M. Öztürk, and M. Öztürk, Copper, zinc, lead and cadmium concentrations in the Mediterranean Mussel Mytilus galloprovincialis Lamaeck 1819 from the Sinop Coast of the Black Sea, Tr. J. Zool. 23, 321–326 (1999).

    CAS  Google Scholar 

  2. C. K. Yap, A. Ismail, and S. G. Tan, Heavy metal (Cd, Cu, Pb, and Zn) concentrations in the green-lipped mussel Perna viridis (Linnaeus) collected from some wild and aquacultural sites in the west coast of Peninsular Malaysia, Food Chem. 84, 569–575 (2004).

    Article  CAS  Google Scholar 

  3. D. J. H. Phillips and P. S. Rainbow, Barnacles and mussels as biomonitors of trace elements: a comparative study, Mar. Ecol. Prog. Ser. 49, 83–93 (1988).

    CAS  Google Scholar 

  4. F. A. Otchere, Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana: model to describe mechanism of accumulation/excretion, Afri. J. Biotechnol. 2, 280–287 (2003).

    CAS  Google Scholar 

  5. J. P. Riley, Los elementos más abundantes y menores en el agua de mar, in Introducción a la Química Marina, J. P. Riley and R. Chester, eds., AGT Editor, S. A. México, pp. 61–104 (1989).

    Google Scholar 

  6. K. Simkiss, M. Taylor, and A. Z. Mason, Metal detoxification and bioaccumulation in mollusks, Mar. Biol. Lett. 8, 187–201 (1982).

    Google Scholar 

  7. L. Giusti, A. C. Williamson, and A. Mistry, Biologically available trace metals in Mytilus edulis from the coast of northeast England, Environ. Int. 25, 969–981 (1999).

    Article  CAS  Google Scholar 

  8. L. Méndez, L. M. Salas-Flores, A. Arreola-Lizarraga, S. T. Alvarez-Castañeda, and B. Acosta, Heavy metals in clams from Guaymas Bay, México, Bull. Environ. Contam. Toxicol. 68, 217–223 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. C. R. Boyden, The effect of size upon metal content of shellfish, J. Mar. Biol. Assoc. UK 57, 675–714 (1977).

    Article  CAS  Google Scholar 

  10. A. M. Keen, Sea shells of Tropical West America. Marine Molluscs from Baja California to Perú, 2nd ed. Stanford University Press, Stanford, CA (1971).

    Google Scholar 

  11. C. E. Nauen, Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products, FAO Fisheries Circular No. 764, FAO, Rome (1983).

    Google Scholar 

  12. D. A. Wright, Trace metal and major ion interactions in aquatic animals, Mar. Pollut. Bull 31, 8–18 (1995).

    Article  CAS  Google Scholar 

  13. Z. H. Cao and Z. Y. Hu, Copper contamination in paddy soils irrigated with wastewater, Chemosphere 41, 3–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. I. Riba, J. Blasco, N. Jiménez-Tenorio, and T. A. Del Valls, Heavy metal bioavailability and effects: bioaccumulation caused by mining activities in the Gulf of Cadiz (SW, Spain), Chemosphere 58, 659–669 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. L. Méndez, B. Acosta, S. T. Alvarez-Castañeda, and C. H. Lechuga-Devéze, Trace metal distribution along the southern coast of Bahía de La Paz (Gulf of California), México, Bull. Environ. Contam. Toxicol. 61, 616–620 (1998).

    Article  PubMed  Google Scholar 

  16. Consejo Minero, Monografía Geológico—Minera del Estado de Baja California Sur. Secretaria de Comercio y Fomento Industrial, Pachuca, Hgo, México (1999).

    Google Scholar 

  17. S. S. Mann and G. S. P. Ritchie, Forms of cadmium in sandy soils after amendment with soils of higher fixing capacity, Environ. Pollut. 87, 23–29 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. E. Shumilin, F. Páez-Osuna, C. Green-Ruiz, D. Sapozhnikov, G. Rodríguez-Meza, and L. Godínez-Orta, Arsenic, antimony, selenium and other trace elements in sediments of the La Paz Lagoon, Península of Baja California, México, Mar. Pollut. Bull. 42, 174–178 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. J. H. Martin and W. W. Broenkow, Cadmium in plankton: elevated concentrations of Baja California, Science 190, 884–885 (1975).

    CAS  Google Scholar 

  20. L. Cheng, G. V. Alexander, and P. J. Franco, Cadmium and other heavy metals in seaskaters (Gerridae: Halobates, Rheumatobates), Water Air Soil Pollut. 6, 33–38 (1976).

    Article  CAS  Google Scholar 

  21. J. A. Segovia-Zavala, F. Delgadillo-Hinojosa, R. Vidal-Talamantes, A. Muñoz-Barbosa, and E. A. Gutiérrez-Galindo, Mytilus californianus transplanted as upwelling bioindicators to two areas off Baja California, Mexico, Ciencias Marinas 29, 665–675 (2003).

    Google Scholar 

  22. Joint FAO/WHO Expert Committee on Food Additives, Toxicological Evaluation of Certain Food Additives and Contaminants, Cambridge University Press, Cambridge, pp. 223–255 (1987).

    Google Scholar 

  23. WHO, Guidelines for Drinking Water Quality, Health Criteria and Other Supporting Information, 2nd ed., World Health Organization, Geneva (1996).

    Google Scholar 

  24. M. Vahter, M. Berglund, B. Nermell and A. Akesson, Bioavailability of cadmium from shellfish and mixed diet in women, Toxicol. Appl. Pharmacol. 136, 332–341 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Frazier, The dynamics of metals in the American oyster Crassostrea virginica. Seasonal effects, Chesapeake Sci. 16, 162–171 (1975).

    Article  CAS  Google Scholar 

  26. R. J. Hugget, M. E. Bender, and H. D. Slone. Utilizing metal concentration relationships in the eastern oyster (Crassostrea virginica) to detect heavy metal pollution, Water Res, 7, 451–460 (1973).

    Article  Google Scholar 

  27. D. J. H. Phillips, The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments: a review, Environ. Pollut. 18, 13–14 (1977).

    Google Scholar 

  28. C. R. Boyden and D. J. H. Phillips, Seasonal variation and inherent variability of trace elements in oysters and their implications for indicator studies, Mar. Ecol. Prog. Ser. 5, 29–40 (1981).

    CAS  Google Scholar 

  29. N. Chidambaram, The green mussel Perna viridis as an indicator of cadmium pollution, J Environ. Biol. 17, 5–10 (1996).

    CAS  Google Scholar 

  30. D. J. H. Phillips and P. S. Rainbow, Biomonitoring of Trace Aquatic Contaminants, 2nd ed., Environmental Management Series, Chapman & Hall, London (1994).

    Google Scholar 

  31. L. Méndez, I. S. Racotta, B. Acosta, and C. Rodríguez-Jaramillo, Mineral concentration in tissues during ovary development of white shrimp Penaeus vannamei, Mar. Biol. 138, 687–692 (2001).

    Article  Google Scholar 

  32. K. M. Swaileh, Seasonal variations in the concentrations of Cu, Cd, Pb, and Zn in Arcaica islandica L. (Mollusca: Bivalvia) from Kiel Bay, Western Baltic Sea, Mar. Pollut. Bull. 32, 631–635 (1996).

    Article  CAS  Google Scholar 

  33. N. B. Terwilliger and M. Ryan, Ontogeny of crustacean respiratory proteins, Am. Zool. 44, 1057–1067 (2001).

    Article  Google Scholar 

  34. M. Villalejo-Fuerte, M. Arellano-Martínez, B. P. Ceballos-Vázquez, and F. García-Domínguez, Reproductive cycle of chocolate clam Megapitaria squalida in Bahía Juncalito, Gulf of California (SOWERBY, 1835) (Bivalvia: Veneridae), in VII Congreso de la Asociación de Investigadores del Mar de Cortés y I Simposium Internacional sobre el Mar de Cortés Hermosillo, Sonora (1999).

  35. M. Tolonen, Vitaminas y Minerales en la Salud y la Nutrición, Acribia, Zaragoza (1995).

    Google Scholar 

  36. J. L. Greger, Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers, Neuro Toxicology 20, 205–212 (1999)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez, L., Palacios, E., Acosta, B. et al. Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico. Biol Trace Elem Res 110, 275–287 (2006). https://doi.org/10.1385/BTER:110:3:275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:3:275

Index Entries

Navigation