Skip to main content
Log in

Chromium (III) Propionate and dietary fructans supplementation stimulate erythrocyte glucose uptake and beta-oxidation in lymphocytes of rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The study describes the effects of 10-wk dietary supplementation with fructans (inulin and oligofructose, 5% and 10%, respectively) as well as the biomimetic Cr(III) propionate complex (0.5 and 5 mg Cr/kg diet) on blood glucose, insulin, glucose transmembrane transport, and β-oxidation of fatty acids in healthy male rats. No significant differences in blood serum glucose concentrations were found. Rats fed diets supplemented with the biomimetic complex (5 mg Cr/kg diet) had markedly decreased serum insulin level by 15%, whereas the red blood cells (RBCs) glucose transmembrane transport and β-oxidation of fatty acids in white blood cells (WBCs) were elevated by 9% and 77%, respectively. These effects were accompanied by a slight decrease of the insulin-resistance index. Oligofructose and the high-fructan diet (10%) were more effective in increasing the RBCs glucose transmembrane transport vs inulin and lowfructan diet (5%). Also, β-oxidation of fatty acids in WBCs was increased by 37.5% in groups fed the high-fructan diet (10%). The results suggest that dietary fructans and the biomimetic Cr(III) complex exerted beneficial effects on glucose and lipid metabolism, increasing the efficiency of their utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Anderson, M. M. Polansky., N. A. Bryden, and J. J. Canary, Supplementalchromium effects on glucose, insulin, glucagon and urinary chromium losses in subjects consuming controlled low-chromium diets. Am. J. Clin. Nutr., 54, 909–916 (1991).

    PubMed  CAS  Google Scholar 

  2. R. A. Anderson, Chromium, glucose intolerance and diabetes, J. Am. Coll. Nutr., 17, 548–555 (1998).

    PubMed  CAS  Google Scholar 

  3. K. Balamurugan, R. Rajaram, T. Ramasami, and S. Narayanan, Chromium (III) induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases, Free Radical Biol. Med., 33, 1622–1640 (2002).

    Article  CAS  Google Scholar 

  4. A. Ostman and F.-D. Bohmer, Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases, Trends Cell Biol., 11, 258–266 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. M. Lipko, T. Kuryl, and B. Dêbski, Reactive oxygen species are involved in chromium(III) and insulin induced glucose uptake in cultured muscle cells, in Vitamine und Zusatzstoffe in der Ernarung von Mensch und Tier, M. Anke (Ed.), Friedrich-Schiller-Universitat, Jena, pp. 355–358 (2003).

    Google Scholar 

  6. J. L. Shelton, R. L. Payne, S. L. Johnston, et al. Effect of chromium propionate on growth, carcass trait, pork quality and plasma metabolites in growing-finishing pigs. J. Anim. Sci., 81, 2515–2524 (2003).

    PubMed  CAS  Google Scholar 

  7. A. Pechova, S. Cech, L. Pavlata, and A. Podhorsky; The influence of chromium supplementation on metabolism, performance and reproduction of dairy cows in a herd with increased occurrence of ketosis, Czech. Anim. Sci., 48, 349–358 (2003).

    CAS  Google Scholar 

  8. J. B. Vincent, Recent developments in the biochemistry of chromium(III), Biol. Trace Element Res., 99, 1–16 (2004).

    Article  CAS  Google Scholar 

  9. B. J. Clodfelder, C. Chang, and J. B. Vincent, Absorption of the biomimetic Chromium cation triaqua-μ3-oxo-μ-hexapropionatotrichromium(III) in rats. Biol. Trace Element Res. 97, 1–11 (2004).

    Article  Google Scholar 

  10. J. K. Speetjens, R. A. Collins, J. B. Vincent, and S. A. Woski, The nutritional supplement chromium(III) tris(picolinate) cleaves DNA, Chem. Res. Toxicol., 12, 483–487 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. J. K. Speetjens, A. Parand, M. W. Crowder, and J. B. Vincent, Low-molecular-weight, chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically relevant conditions. Polyhedron, 18, 2617–2624 (1999).

    Article  CAS  Google Scholar 

  12. D. M. Stearns, J. P. Wise, S. R. Patierno, and K. E. Wetterhahn, Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells FASEB J. 9, 1643–1648 (1995).

    PubMed  CAS  Google Scholar 

  13. C. M. Davis, and J. B. Vincent, Chromium in carbohydrate and lipid metabolism, J. Biol. Inorg. Chem., 2, 675–679 (1997).

    Article  CAS  Google Scholar 

  14. J. B. Vincent, Recent advances in the biochemistry of chromium, J. Trace Elements Exp. Med., 16, 227–236 (2003).

    Article  CAS  Google Scholar 

  15. J. B. Vincent, The bioinorganic chemistry of chromium(III), Polyhedron, 20, 1–26 (2001).

    Article  CAS  Google Scholar 

  16. T. Kuryl, M. Lipko, and B. Debski, Metabolism of fatty acids in broiler chicken is affected by chromium, in Metal Ions in Biology and Medicine, L. Khassanova, P. Collery, I. Maymard, Z. Khassanova, and J.-C. Etienne eds., John Libbey CIC, Rome, Vol. 7, Part X, pp. 454–459 (2002).

    Google Scholar 

  17. O. Wada, G. Y. Wu, A. Yamamoto, S. Manabe, and T. Ono, Purification and chromiumexcretory function of low-molecular weight chromium binding substances from dog liver, Environ. Res., 32, 228–239 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. G. W. Evans, and T. D. Bowman, Chromium picolinate increases membrane fluidity and rate of internalization, J. Inorg. Biochem., 46, 243–250 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. M. Lipko, A. Orzechowski, T. Kuryl, and B. Dębski, Influence of chromium on glucose uptake in mouse myotubes, in Mengen- und Spurenelemente, 21 Arbeitstagugn, 2002, Friedrich Schiller-Universitat, Jena, M. Anke et al. (Eds.), Schubert Verlag, Leipzig, pp. 560–566 (2002).

    Google Scholar 

  20. C. Cherbut, Inulin and oligofructose in the dietary fiber concept, Br. J. Nutr., 87, 159–162 (2002).

    Google Scholar 

  21. E. Sawosz, Znaczenie chromu (Cr+3) w zywieniu zwierzat. Dietetyka 441–443 (1999) (in Polish).

  22. F. Brighenti, M. C. Casiraghi, E. Canci, and A. Ferrari, Effect of consumption of a readyto-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. Eur. J. Clin. Nutr., 53, 726–733 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. D. Letexier, F. Diraison, and M. Beylot, Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in human. Am. J. Clin. Nutr., 77, 559–564 (2003).

    PubMed  CAS  Google Scholar 

  24. P. G. Reevens, H. Nielsen, and G. C. Fahey, AIN-93. Purfield diets for laboratory rodents. Final report of the American Institute of Nutrition ad hoc writing Committee on the Reformulation of the AIN-76 A rodent diet, J. Nutr., 123, 1939–1951 (1993).

    Google Scholar 

  25. A. Earnshaw, B. N. Figgis, and J. Lewis, Chemistry of polynuclear compounds. Part VI. Magnetic properties of timer chromium and iron carboxylates, J. Chem. Soc. A 1656–1663 (1966).

  26. T. Kuryl, M. Adamowicz, B. Dêbski, J. Bertrandt, and K. Martinik, Degradation of [9, 10]-3H-myristic acid by lymphocytes. Screening test of inherited disorders of activation, transport and mitochondrial oxidation of fatty acids, Aterosclerosa 23–26 (2001).

  27. D. R. Matthews, J. P. Hosker, A. S. Rudeski, B. A. Naylor, D. F. Treacher, and R. C. Turner, Homeostasis model assessment: insulin resistance and B-cell function from fasting plasma glucose and insulin concentration in man. Diabetologin 28, 421–429 (1985).

    Google Scholar 

  28. A. Yamamoto, O. Wada, and T. Ono. Isolation of biologically active low-molecularmass chromium compound from rabbit liver, Eur. J. Biochem., 165, 627–631 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Sun, J. Ramirezs, S. A. Woski, and J. B. Vincent, The binding of trivalent chromium to low-molecular-weight chromium binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWC. J. Biol. Inorg. Chem., 5, 129–136 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. B. J. Clodfelder, J. Emamaullee, D. D. Hepburn, N. E. Chakov, H. S. Nettles, and J. B. Vincent, The trial of chromium(III) in vitro from the blood to the urine: the roles of transferrin and chromodulin, J. Biol. Inorg. Chem., 6, 608–617 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. C. M. Davis, K. H. Sumrall, and J. B. Vincent, The biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP), Biochemistry, 35, 12,963–12,969 (1996).

    CAS  Google Scholar 

  32. C. M. Davis, A. C. Royer, and J. B. Vincent, Synthetic multinuclear chromium assembly activates insulin receptor kinase activity: functional model for low-molecular-weight chromium-binding substance, Inorg. Chem., 36, 5316–5320 (1997).

    Article  CAS  Google Scholar 

  33. W. W. Campbell, L. J. O. Joseph, S. L. Davey, D. Cyr-Campbell, R. A. Anderson, and W. J. Evans, Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men, J. Appl. Physiol., 86, 29–39 (1999).

    PubMed  CAS  Google Scholar 

  34. L. S. Walker, M. G. Bemben, D. A. Bemben, and A. W. Knehans, Chromium picolinate effects on body composition and muscular performance in wrestlers, Med. Sci. Sports. Exerc., 30, 1730–1737 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. R. A. Anderson, N. A. Brygden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats, J. Am. Coll. Nutr., 6, 273–279 (1997).

    Google Scholar 

  36. R. A. Anderson, Essentiality of chromium in humans, Sci. Total Environ., 86, 75–81 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Sun, B. J. Clodfelder, A. A. Shute, T. Irvin, and J. B. Vincent, The biomimetic [Cr3O (O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol, and triglycerides in healthy and type II diabetic rats but not type I diabetic rats. J. Biol. Inorg. Chem., 7, 852–862 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. B. J. Clodfelder, B. M. Gullick, H. C. Lukaski, Y. Neggers, and J. B. Vincent, Oral adminstration of the biomimetic [Cr3O(C2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats, J. Biol. Inorg. Chem., 10, 119–130 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. M. Williams, Effects of inulin on lipid parameters in human. J. Nutr., 129, 1471–1473 (1999).

    Google Scholar 

  40. M. Williams and K. G. Jackson, Inulin and oligofructose: effects on lipid metabolism from human studies, Br. J. Nutr., 87, 261–264 (2002).

    Article  CAS  Google Scholar 

  41. N. M. Delzenne and N. N. Kok, Effects of fructans-type of prebiotics on lipid metabolism, Am. J. Clin. Nutr., 73, 456–458 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuryl, T., Krejpcio, Z., Wójciak, R.W. et al. Chromium (III) Propionate and dietary fructans supplementation stimulate erythrocyte glucose uptake and beta-oxidation in lymphocytes of rats. Biol Trace Elem Res 114, 237–248 (2006). https://doi.org/10.1385/BTER:114:1:237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:114:1:237

Index Entries

Navigation