Skip to main content
Log in

Hypoxia-induced changes in neuronal network properties

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Because of their high energetic demand, neurons within the mammalian central nervous system are extremely sensitive to changes in partial pressure of oxygen. Faced with acute hypoxic conditions, an organism must follow a complex and highly dynamic emergency plan to secure survival. Behavioral functions that are not immediately essential for survival are turned off, and critical behaviors (such as breathing) undergo a biphasic response. An augmentation of breathing is initially adaptive, whereas prolonged hypoxic conditions are better served by an energy-saving mode. However, the hypoxic response of an organism depends on many additional factors. Environmental conditions, the animal’s age and health, and the pattern (continuous vs intermittent) and duration (chronic vs acute) of hypoxia greatly determine the specific course of a hypoxic response. Different forms of hypoxia can cause pathology or be used as therapy. Therefore, it is not surprising that the hypoxic response of an organism results from widespread and highly diverse reconfigurations of neuronal network functions in different brain areas that are accomplished by diverse hypoxic changes at all levels of the nervous system (i.e., molecular, cellular, synaptic, neuronal, network). Hypoxia-induced changes in synaptic transmission are generally depressive and result primarily from presynaptic mechanisms, whereas changes in intrinsic properties involve excitatory and inhibitory alterations involving the majority of K+, Na+, and Ca2+ channels. This article reviews the response of the nervous system to hypoxia, accounting for all levels of integration from the cellular to the network level, and postulates that a better understanding of the diversity of cellular events is only possible if cellular and network events are considered in a functional and organismal context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnaiger E. (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir. Physiol. 128, 277–297.

    Article  PubMed  CAS  Google Scholar 

  2. Gonzalez C., Almaraz L., Obeso A., and Rigual R. (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74, 829–898.

    PubMed  CAS  Google Scholar 

  3. Lopez-Barneo J., Pardal R., and Ortega-Saenz P. (2001) Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63, 259–287.

    Article  PubMed  CAS  Google Scholar 

  4. Peers C. (1997) Oxygen-sensitive ion channels. Trends Pharmacol. Sci. 18, 405–408.

    PubMed  CAS  Google Scholar 

  5. Prabhakar N. R. (2000) Oxygen sensing by the carotid body chemoreceptors. J. Appl. Physiol. 88, 2287–2295.

    PubMed  CAS  Google Scholar 

  6. Fu X. W., Wang D., Nurse C. A., Dinauer M. C., and Cutz E. (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc. Natl. Acad. Sci. USA 97, 4374–4379.

    Article  PubMed  CAS  Google Scholar 

  7. Youngson C., Nurse C., Yeger H., and Cutz E. (1993) Oxygen sensing in airway chemoreceptors. Nature. 365, 153–155.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson R. J. and Nurse C. A. (1998) Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J. Physiol. 512, 421–434.

    Article  PubMed  CAS  Google Scholar 

  9. Archer S. L., Huang J., Henry T., Peterson D., and Weir E. K. (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 73, 1100–1112.

    PubMed  CAS  Google Scholar 

  10. Archer S. L., Souil E., Dinh-Xuan A. T., et al. (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 101, 2319–2330.

    PubMed  CAS  Google Scholar 

  11. Haddad G. G. and Jiang C. (1993) O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog. Neurobiol. 40, 277–318.

    Article  PubMed  CAS  Google Scholar 

  12. Haddad G. G. and Jiang C. (1997) O2-sensing mechanisms in excitable cells: role of plasma membrane K+ channels. Annu. Rev. Physiol. 59, 23–42.

    Article  PubMed  CAS  Google Scholar 

  13. Henrich M., Hoffmann K., Konig P., et al. (2002) Sensory neurons respond to hypoxia with NO production associated with mitochondria. Mol. Cell. Neurosci. 20, 307–322.

    Article  PubMed  CAS  Google Scholar 

  14. Peña F., Parkis M. A., Tryba A. K., and Ramirez J. M. (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43, 105–117.

    Article  PubMed  Google Scholar 

  15. Plant L. D., Kemp P. J., Peers C., Henderson Z., and Pearson H. A. (2002) Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 33, 2324–2328.

    Article  PubMed  Google Scholar 

  16. Jiang C. and Haddad G. G. (1994) A direct mechanism for sensing low oxygen levels by central neurons. Proc. Natl. Acad. Sci. USA 91, 7198–7201.

    Article  PubMed  CAS  Google Scholar 

  17. Hammarstrom A. K. and Gage P. W. (2000) Oxygen-sensing persistent sodium channels in rat hippocampus. J. Physiol. 529, 107–118.

    Article  PubMed  CAS  Google Scholar 

  18. Lutz P. L. and Nilsson G. E. (1997) Contrasting strategies for anoxic brain survival—glycolysis up or down. J. Exp. Biol. 200, 411–419.

    PubMed  CAS  Google Scholar 

  19. Bickler P. E. and Buck L. T. (1998) Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations. J. Exp. Biol. 201, 1141–1152.

    PubMed  CAS  Google Scholar 

  20. Bickler P. E., Donohoe P. H., and Buck L. T. (2002) Molecular adaptations for survival during anoxia: lessons from lower vertebrates. Neuroscientist 8, 234–242.

    PubMed  CAS  Google Scholar 

  21. Hochachka P. W. and Lutz P. L. (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 130, 435–459.

    Article  CAS  Google Scholar 

  22. Hochachka P. W. (1986) Balancing conflicting metabolic demands of exercise and diving. Fed. Proc. 45, 2948–2952.

    PubMed  CAS  Google Scholar 

  23. Hopfl G., Ogunshola O., and Gassmann M. (2003) Hypoxia and high altitude. The molecular response. Adv. Exp. Med. Biol. 543, 89–115.

    PubMed  Google Scholar 

  24. Hourdez S. and Weber R. E. (2005) Molecular and functional adaptations in deep-sea hemoglobins. J. Inorg. Biochem. 99, 130–141.

    Article  PubMed  CAS  Google Scholar 

  25. Leblond J. and Krnjevic K. (1989) Hypoxic changes in hippocampal neurons. J. Neurophysiol. 62, 1–14.

    PubMed  CAS  Google Scholar 

  26. Bachevalier J. and Meunier M. (1989) Cerebral ischemia: are the memory deficits associated with hippocampal cell loss? Hippocampus. 6, 553–560.

    Article  Google Scholar 

  27. Hara H., Sukamoto T., and Kogure K. (1993) Mechanism and pathogenesis of ischemia-induced neuronal damage. Prog. Neurobiol. 40, 645–670.

    Article  PubMed  CAS  Google Scholar 

  28. Ramirez J. M., Tryba A. K., and Pena F. (2004) Pacemaker neurons and neuronal networks: an integrative view. Curr. Opin. Neurobiol. 14, 665–674.

    Article  PubMed  CAS  Google Scholar 

  29. Lipton P. and Whittingham T. S. (1979) The effect of hypoxia on evoked potentials in the in vitro hippocampus. J. Physiol. 287, 427–438.

    PubMed  CAS  Google Scholar 

  30. Luhmann H. J. and Heinemann U. (1992) Hypoxia-induced functional alterations in adult rat neocortex. J Neurophysiol. 67, 798–811.

    PubMed  CAS  Google Scholar 

  31. Cummins T. R., Agulian S. K., and Haddad G. G. (1993) Oxygen tension clamp around single neurons in vitro: a computerized method for studies on O2 deprivation. J. Neurosci. Methods 46, 183–189.

    Article  PubMed  CAS  Google Scholar 

  32. Fowler J. C., Gervitz L. M., Hamilton M. E., and Walker J. A. (2003) Systemic hypoxia and the depression of synaptic transmission in rat hippocampus after carotid artery occlusion. J. Physiol. 550, 961–972.

    Article  PubMed  CAS  Google Scholar 

  33. Gervitz L. M., Lutherer L. O., Davies D. G., Pirch J. H., and Fowler J. C. (2001) Adenosine induces initial hypoxic-ischemic depression of synaptic transmission in the rat hippocampus in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R639-R645.

    PubMed  CAS  Google Scholar 

  34. Gervitz L. M., Davies D. G., Omidvar K., and Fowler J. C. (2003) The effect of acute hypoxemia and hypotension on adenosine-mediated depression of evoked hippocampal synaptic transmission. Exp. Neurol. 182, 507–517.

    Article  PubMed  CAS  Google Scholar 

  35. Fujiwara N., Higashi H., Shimoji K., and Yoshimura M. (1987) Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. 384, 131–151.

    PubMed  CAS  Google Scholar 

  36. Jiang C. and Haddad G. G. (1992) Differential responses of neocortical neurons to glucose and/or O2 deprivation in the human and rat. J. Neurophysiol. 68, 2165–2173.

    PubMed  CAS  Google Scholar 

  37. Katchman A. N. and Hershkowitz N. (1993) Adenosine antagonists prevent hypoxia-induced depression of excitatory but not inhibitory synaptic currents. Neurosci Lett. 159, 123–126.

    Article  PubMed  CAS  Google Scholar 

  38. Katchman A. N. and Hershkowitz N. (1993) Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. J. Neurophysiol. 70, 1–7.

    PubMed  CAS  Google Scholar 

  39. Fujimura N., Tanaka E., Yamamoto S., Shigemori M., and Higashi H. (1997) Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 77, 378–385.

    PubMed  CAS  Google Scholar 

  40. Erdemli G. and Crunelli V. (1998) Response of thalamocortical neurons to hypoxia: a whole-cell patch-clamp study. J Neurosci. 18, 5212–5224.

    PubMed  CAS  Google Scholar 

  41. Hammarstrom A. K. and Gage P. W. (1998) Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J Physiol. 510, 735–741.

    Article  PubMed  Google Scholar 

  42. Mironov S. L. and Richter D. W. (1999) Cytoskeleton mediates inhibition of the fast Na+ current in respiratory brainstem neurons during hypoxia. Eur J Neurosci. 11, 1831–1834.

    Article  PubMed  CAS  Google Scholar 

  43. Kulik A., Trapp S., and Ballanyi K. (2000) Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro. J. Neurophysiol. 83, 2905–2915.

    PubMed  CAS  Google Scholar 

  44. Hida W., Tun Y., Kikuchi Y., Okabe S., and Shirato K. (2002) Pulmonary hypertension in patients with chronic obstructive pulmonary disease: recent advances in pathophysiology and management. Respirology 7, 3–13.

    Article  PubMed  Google Scholar 

  45. Naughton M. T. and Bradley T. D. (1998) Sleep apnea in congestive heart failure. Clin. Chest Med. 19, 99–113.

    Article  PubMed  CAS  Google Scholar 

  46. Lanfranchi P. and Somers V. K. (2001) Obstructive sleep apnea and vascular disease. Respir. Res. 2, 315–319.

    Article  PubMed  CAS  Google Scholar 

  47. Rossen R., Kabat H., and Anderson J. P. (1943) Acute arrest of cerebral circulation in man. Arch. Neurol. Psych. 50, 510–528.

    Google Scholar 

  48. Lipton P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  49. Hansen A. J., Hounsgaard J., and Jahnsen H. (1982) Anoxia increases potassium conductance in hippocampal nerve cells. Acta. Physiol. Scand. 115, 301–310.

    PubMed  CAS  Google Scholar 

  50. Krnjevic K. and Leblond J. (1989) Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J Neurophysiol. 62, 15–30.

    PubMed  CAS  Google Scholar 

  51. Young J. N. and Somjen G. G. (1992) Suppression of presynaptic calcium currents by hypoxia in hippocampal tissue slices. Brain Res. 21, 70–76.

    Article  Google Scholar 

  52. Neubauer J. A. and Sunderram J. (2004) Oxygen-sensing neurons in the central nervous system. J. Appl. Physiol. 96, 367–374.

    Article  PubMed  CAS  Google Scholar 

  53. Duffy T. E., Kohle S. J., and Vannucci R. C. (1975) Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J. Neurochem. 24, 271–276.

    Article  PubMed  CAS  Google Scholar 

  54. Ferriero D. M., Arcavi L. J., Sagar S. M., McIntosh T. K., and Simon R. P. (1988) Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia. Ann. Neurol. 24, 670–676.

    Article  PubMed  CAS  Google Scholar 

  55. Cherubini E., Ben-Ari Y., and Krnjevic K. (1989) Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J. Neurophysiol. 62, 882–895.

    PubMed  CAS  Google Scholar 

  56. Haddad G. G. and Donnelly D. F. (1990) O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J. Physiol. 429, 411–428.

    PubMed  CAS  Google Scholar 

  57. Jiang C., Agulian S., and Haddad G. G. (1991) O2 tension in adult and neonatal brain slices under several experimental conditions. Brain Res. 568, 159–164.

    Article  PubMed  CAS  Google Scholar 

  58. Singer D. (1999) Neonatal tolerance to hypoxia: a comparative-physiological approach. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 123, 221–234.

    Article  PubMed  CAS  Google Scholar 

  59. Hicks S. P. (1953) Developmental brain metabolism; effects of cortisone, anoxia, fluoroacetate, radiation, insulin, and other inhibitors on the embryo, newborn, and adult. AMA Arch. Pathol. 55, 302–327.

    PubMed  CAS  Google Scholar 

  60. Ballanyi K., Kuwana S., Volker A., Morawietz G., and Richter D. W. (1992) Developmental changes in the hypoxia tolerance of the in vitro respiratory network of rats. Neurosci. Lett. 148, 141–144.

    Article  PubMed  CAS  Google Scholar 

  61. Choi D. W. and Rothman S. M. (1990) The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182.

    Article  PubMed  CAS  Google Scholar 

  62. Friedman J. E. and Haddad G. G. (1993) Major differences in Ca2+i response to anoxia between neonatal and adult rat CA1 neurons: role of Ca2+o and Na+o. J. Neurosci. 13, 63–72.

    PubMed  CAS  Google Scholar 

  63. Kawai S., Yonetani M., Nakamura H., and Okada Y. (1989) Effects of deprivation of oxygen and glucose on the neural activity and the level of high energy phosphates in the hippocampal slices of immature and adult rat. Brain Res. Dev. Brain Res. 48, 11–18.

    Article  PubMed  CAS  Google Scholar 

  64. Bickler P. E., Gallego S. M., and Hansen B. M. (1993) Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia. J. Cereb. Blood. Flow. Metab. 13, 811–819.

    PubMed  CAS  Google Scholar 

  65. Luhmann H. J., Kral T., and Heinemann U. (1993) Influence of hypoxia on excitation and GABAergic inhibition in mature and developing rat neocortex. Exp. Brain Res. 97, 209–224.

    Article  PubMed  CAS  Google Scholar 

  66. Hansen A. J. (1985). Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148

    PubMed  CAS  Google Scholar 

  67. Ben-Ari Y. (1992) Effects of anoxia and aglycemia on the adult and immature hippocampus. Biol. Neonate. 62, 225–230.

    Article  PubMed  CAS  Google Scholar 

  68. Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R., and Webb W. W. (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103.

    Article  PubMed  CAS  Google Scholar 

  69. Booth R. F., Patel T. B., and Clark J. B. (1980) The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J. Neurochem. 34, 17–25.

    Article  PubMed  CAS  Google Scholar 

  70. Kreisman N. R., Sick T. J., LaManna J. C., and Rosenthal M. (1981) Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo. Brain Res. 218, 161–174.

    Article  PubMed  CAS  Google Scholar 

  71. Erecinska M. and Silver I. A. (1994) Ions and energy in mammalian brain. Prog. Neurobiol. 43, 37–71.

    Article  PubMed  CAS  Google Scholar 

  72. Hong S. S., Gibney G. T., Esquilin M., Yu J., and Xia Y. (2004) Effect of protein kinases on lactate dehydrogenase activity in cortical neurons during hypoxia. Brain Res. 1009, 195–202.

    Article  PubMed  CAS  Google Scholar 

  73. Paschen W. and Djuricic B. (1995) Comparison of in vitro ischemia-induced disturbances in energy metabolism and protein synthesis in the hippocampus of rats and gerbils. J. Neurochem. 65, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  74. Milusheva E. A., Doda M., Baranyi M., and Vizi E. S. (1996) Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [Ca2+]o-dependent and independent release of [3H]dopamine in rat striatal slices. Neurochem. Int. 28, 501–507.

    Article  PubMed  CAS  Google Scholar 

  75. Marrif H. and Juurlink B. H. (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J. Neurosci. Res. 57, 255–260.

    Article  PubMed  CAS  Google Scholar 

  76. Ojala B. E., Page L. A., Moore M. A., and Thompson L. V. (2001) Effects of inactivity on glycolytic capacity of single skeletal muscle fibers in adult and aged rats. Biol. Res. Nurs. 3, 88–95.

    PubMed  CAS  Google Scholar 

  77. Dang C. V. and Semenza G. L. (1999) Oncogenic alterations of metabolism. Trends Biochem. Sci. 24, 68–72.

    Article  PubMed  CAS  Google Scholar 

  78. Robin E. D., Murphy B. J., and Theodore J. (1984) Coordinate regulation of glycolysis by hypoxia in mammalian cells. J. Cell. Physiol. 118, 287–290.

    Article  PubMed  CAS  Google Scholar 

  79. Tian G. F. and Baker A. J. (2000) Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices. J. Neurophysiol. 83, 1830–1839.

    PubMed  CAS  Google Scholar 

  80. Schurr A., West C. A., Reid K. H., Tseng M. T., Reiss S. J., and Rigor B. M. (1987) Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro. Brain Res. 421, 135–139.

    Article  PubMed  CAS  Google Scholar 

  81. Callahan D. J., Engle M. J., and Volpe J. J. (1990) Hypoxic injury to developing glial cells: protective effect of high glucose. Pediatr. Res. 27, 186–190.

    Article  PubMed  CAS  Google Scholar 

  82. Schurr A., West C. A., and Rigor B. M. (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240, 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  83. Ballanyi K., Volker A., and Richter D. W. (1996) Functional relevance of anaerobic metabolism in the isolated respiratory network of newborn rats. Pflugers Arch. 432, 741–748.

    Article  PubMed  CAS  Google Scholar 

  84. LaManna J. C., Haxhiu M. A., Kutina-Nelson K. L., et al. (1996) Decreased energy metabolism in brain stem during central respiratory depression in response to hypoxia. J. Appl. Physiol. 81, 1772–1777.

    PubMed  CAS  Google Scholar 

  85. Siesjo B. K., Katsura K., and Kristian T. (1996) Acidosis-related damage. Adv. Neurol. 71, 209–233.

    PubMed  CAS  Google Scholar 

  86. Fujiwara N., Abe T., Endoh H., Warashina A., and Shimoji K. (1992) Changes in intracellular pH of mouse hippocampal slices responding to hypoxia and/or glucose depletion. Brain Res. 572, 335–339.

    Article  PubMed  CAS  Google Scholar 

  87. Pulsinelli W. A., Brierley J. B., and Plum F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11, 491–498.

    Article  PubMed  CAS  Google Scholar 

  88. Giffard R. G., Monyer H., Christine C. W., and Choi D. W. (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506, 339–342.

    Article  PubMed  CAS  Google Scholar 

  89. Tombaugh G. C. and Sapolsky R. M. (1990) Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res. 506, 343–345.

    Article  PubMed  CAS  Google Scholar 

  90. Krnjevic K. (1993) Central cholinergic mechanisms and function. Prog. Brain Res. 98, 285–292.

    PubMed  CAS  Google Scholar 

  91. Martin L. J., Brambrink A. M., Lehmann C., et al. (1997) Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann. Neurol. 42, 335–348.

    Article  PubMed  CAS  Google Scholar 

  92. Crepel V., Krnjevic K., and Ben-Ari Y. (1992) Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose. Neuroscience 47, 579–587.

    Article  PubMed  CAS  Google Scholar 

  93. Ballanyi K., Doutheil J., and Brockhaus J. (1996) Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. J. Physiol. 495, 769–784.

    PubMed  CAS  Google Scholar 

  94. Ballanyi K., Kuwana S., Volker A., Morawietz G., and Richter D. W. (1992) Developmental changes in the hypoxia tolerance of the in vitro respiratory network of rats. Neurosci. Lett. 148, 141–144.

    Article  PubMed  CAS  Google Scholar 

  95. Donnelly D. F., Jiang C., and Haddad G. G. (1992) Comparative responses of brain stem and hippocampal neurons to O2 deprivation: in vitro intracellular studies. Am. J. Physiol. 262, L549-L554.

    PubMed  CAS  Google Scholar 

  96. O’Reilly J. P., Jiang C., and Haddad G. G. (1995) Major differences in response to graded hypoxia between hypoglossal and neocortical neurons. Brain Res. 683, 179–186.

    Article  PubMed  CAS  Google Scholar 

  97. Cowan A. I. and Martin R. L. (1992) Ionic basis of membrane potential changes induced by anoxia in rat dorsal vagal motoneurones. J. Physiol. 455, 89–109.

    PubMed  CAS  Google Scholar 

  98. Nolan P. C. and Waldrop T. G. (1996) Ventrolateral medullary neurons show age-dependent depolarizations to hypoxia in vitro. Brain Res. Dev. Brain Res. 91, 111–120.

    Article  PubMed  CAS  Google Scholar 

  99. Thoby-Brisson M. and Ramirez J. M. (2000) Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J. Neurosci. 20, 5858–5866.

    PubMed  CAS  Google Scholar 

  100. Cummins T. R., Donnelly D. F., and Haddad G. G. (1991) Effect of metabolic inhibition on the excitability of isolated hippocampal CA1 neurons: developmental aspects. J. Neurophysiol. 66, 1471–1482.

    PubMed  CAS  Google Scholar 

  101. Belousov A. B., Godfraind J. M., and Krnjevic K. (1995) Internal Ca2+ stores involved in anoxic responses of rat hippocampal neurons. J. Physiol. 486, 547–556.

    PubMed  CAS  Google Scholar 

  102. Hyllienmark L. and Brismar T. (1996) Effect of metabolic inhibition on K+ channels in pyramidal cells of the hippocampal CA1 region in rat brain slices. J Physiol. 496 (Pt 1), 155–164.

    PubMed  CAS  Google Scholar 

  103. Hyllienmark L. and Brismar T. (1999) Effect of hypoxia on membrane potential and resting conductance in rat hippocampal neurons. Neuroscience 91, 511–517.

    Article  PubMed  CAS  Google Scholar 

  104. Erdemli G., Xu Y. Z., and Krnjevic K. (1998) Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia. J. Neurophysiol. 80, 2378–2390.

    PubMed  CAS  Google Scholar 

  105. Misgeld U. and Frotscher M. (1982) Dependence of the viability of neurons in hippocampal slices on oxygen supply. Brain Res. Bull. 8, 95–100.

    Article  PubMed  CAS  Google Scholar 

  106. Reiner P. B., Laycock A. G., and Doll C. J. (1990) A pharmacological model of ischemia in the hippocampal slice. Neurosci. Lett. 119, 175–178.

    Article  PubMed  CAS  Google Scholar 

  107. Zhang L. and Krnjevic K. (1993) Whole-cell recording of anoxic effects on hippocampal neurons in slices. J. Neurophysiol. 69, 118–127.

    Article  PubMed  CAS  Google Scholar 

  108. Fung M. L. and Haddad G. G. (1997) Anoxia-induced depolarization in CA1 hippocampal neurons: role of Na+-dependent mechanisms. Brain Res. 762, 97–102.

    Article  PubMed  CAS  Google Scholar 

  109. Rosen A. S. and Morris M. E. (1993) Anoxic depression of excitatory and inhibitory postsynaptic potentials in rat neocortical slices. J. Neurophysiol. 69, 109–117.

    PubMed  CAS  Google Scholar 

  110. Englund M., Hyllienmark L., and Brismar T. (2001) Chemical hypoxia in hippocampal pyramidal cells affects membrane potential differentially depending on resting potential. Neuroscience 106, 89–94.

    Article  PubMed  CAS  Google Scholar 

  111. Godfraind J. M., Kawamaura H., Krnjevic K., and Pumain R. (1971) Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J. Physiol. 215, 199–222.

    PubMed  CAS  Google Scholar 

  112. Yamamoto S., Tanaka E., Shoji Y., Kudo Y., Inokuchi H., and Higashi H. (1997) Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J. Neurophysiol. 78, 903–911.

    PubMed  CAS  Google Scholar 

  113. Zhu P. J. and Krnjevic K. (1997) Endogenous adenosine on membrane properties of CA1 neurons in rat hippocampal slices during normoxia and hypoxia. Neuropharmacology 36, 169–176.

    Article  PubMed  CAS  Google Scholar 

  114. Pascual O., Morin-Surun M. P., Barna B., Denavit-Saubie M., Pequignot J. M., and Champagnat J. (2002) Progesterone reverses the neuronal responses to hypoxia in rat nucleus tractus solitarius in vitro. J. Physiol. 544, 511–520.

    Article  PubMed  CAS  Google Scholar 

  115. Croning M. D., Zetterstrom T. S., Grahame-Smith D. G., and Newberry N. R. (1995) Action of adenosine receptor antagonists on hypoxia-induced effects in the rat hippocampus in vitro. Br. J. Pharmacol. 116, 2113–2119.

    PubMed  CAS  Google Scholar 

  116. Yang J. J., Chou Y. C., Lin M. T., and Chiu T. H. (1997) Hypoxia-induced differential electrophysiological changes in rat locus coeruleus neurons. Life Sci. 61, 1763–1773.

    Article  PubMed  CAS  Google Scholar 

  117. Wang G., Zhou P., Repucci M. A., Golanov E. V., and Reis D. J. (2001) Specific actions of cyanide on membrane potential and voltage-gated ion currents in rostral ventrolateral medulla neurons in rat brainstem slices. Neurosci. Lett. 309, 125–129.

    Article  PubMed  CAS  Google Scholar 

  118. Mercuri N. B., Bonci A., Calabresi P., Stratta F., and Bernardi G. (1994) Responses of rat mesencephalic dopaminergic neurons to a prolonged period of oxygen deprivation. Neuroscience 63, 757–764.

    Article  PubMed  CAS  Google Scholar 

  119. Mercuri N. B., Bonci A., Johnson S. W., Stratta F., Calabresi P., and Bernardi G. (1994) Effects of anoxia on rat midbrain dopamine neurons. J. Neurophysiol. 71, 1165–1173.

    PubMed  CAS  Google Scholar 

  120. Calabresi P., Pisani A., Mercuri N. B, and Bernardi G. (1995) Hypoxia-induced electrical changes in striatal neurons. J. Cereb. Blood Flow Metab. 15, 1141–1145.

    PubMed  CAS  Google Scholar 

  121. Dillon G. H. and Waldrop T. G. (1993) Responses of feline caudal hypothalamic cardiorespiratory neurons to hypoxia and hypercapnia. Exp. Brain Res. 96, 260–272.

    Article  PubMed  CAS  Google Scholar 

  122. Ryan J. W. and Waldrop T. G. (1995) Hypoxia sensitive neurons in the caudal hypothalamus project to the periaqueductal gray. Respir. Physiol. 100, 185–194.

    Article  PubMed  CAS  Google Scholar 

  123. Dillon G. H. and Waldrop T. G. (1992) In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia. Neuroscience 51, 941–950.

    Article  PubMed  CAS  Google Scholar 

  124. Horn E. M., Dillon G. H., Fan Y. P., and Waldrop T. G. (1999) Developmental aspects and mechanisms of rat caudal hypothalamic neuronal responses to hypoxia. J. Neurophysiol. 81, 1949–1959.

    PubMed  CAS  Google Scholar 

  125. Watts A. E., Hicks G. A., and Henderson G. (1995) Putative pre- and postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J. Neurosci. 15, 3065–3074.

    PubMed  CAS  Google Scholar 

  126. Nieber K., Sevcik J., and Illes P. (1995) Hypoxic changes in rat locus coeruleus neurons in vitro. J. Physiol. 486, 33–46.

    PubMed  CAS  Google Scholar 

  127. Duchen M. R. (1990) Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J. Physiol. 424, 387–409.

    PubMed  CAS  Google Scholar 

  128. Jiang C., Sigworth F. J., and Haddad G. G. (1994) Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J. Neurosci. 14, 5590–5602.

    PubMed  CAS  Google Scholar 

  129. Mourre C., Ben Ari Y., Bernardi H., Fosset M., and Lazdunski M. (1989) Antidiabetic sulfony-lureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res. 486, 159–164.

    Article  PubMed  CAS  Google Scholar 

  130. Chung I., Zhang Y., Eubanks J. H., and Zhang L. (1998) Attenuation of hypoxic current by intracellular applications of ATP regenerating agents in hippocampal CA1 neurons of rat brain slices. Neuroscience 86, 1101–1107.

    Article  PubMed  CAS  Google Scholar 

  131. Pisani A., Calabresi P., Centonze D., Marfia G. A., and Bernardi G. (1999) Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. J. Neurophysiol. 81, 2508–2516.

    PubMed  CAS  Google Scholar 

  132. Wan Q., Yao H., and Wang F. (1999) Involvement of K(+) channels in the inhibitory effects of adenosine on anoxia-induced [Ca(2+) ](i) increase in cultured rat hippocampal CA1 neurons. Biol. Signals Recept. 8, 309–315.

    Article  PubMed  CAS  Google Scholar 

  133. Garcia de Arriba S., Franke H., Pissarek M., Nieber K., and Illes P. (1999) Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices during hypoxia. Neurosci. Lett. 273, 13–16.

    Article  Google Scholar 

  134. Lopez-Barneo J., Lopez-Lopez J. R., Urena J., and Gonzalez C. (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241, 580–582.

    Article  PubMed  CAS  Google Scholar 

  135. Lopez-Barneo J. (1994) Oxygen-sensitive ion channels: how ubiquitous are they? Trends Neurosci. 17, 133–135.

    Article  PubMed  CAS  Google Scholar 

  136. Fearon I. M., Palmer A. C., Balmforth A. J., Ball S. G., Varadi G., and Peers C. (1999) Modulation of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by redox agents and hypoxia. J. Physiol. 514, 629–637.

    Article  PubMed  CAS  Google Scholar 

  137. Fleidervish I. A., Gebhardt C., Astman N., Gutnick M. J., and Heinemann U. (2001) Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. J. Neurosci. 21, 4600–4608.

    PubMed  CAS  Google Scholar 

  138. Zawar C. and Neumcke B. (2000) Differential activation of ATP-sensitive potassium channels during energy depletion in CA1 pyramidal cells and interneurones of rat hippocampus. Pflugers Arch. 439, 256–262.

    Article  PubMed  CAS  Google Scholar 

  139. Shan H. Q. and Cheng J. S. (2000) Effect of adenosine on adenosine triphosphate-sensitive potassium channel during hypoxia in rat hippocampal neurons. Neurosci. Lett. 286, 45–48.

    Article  PubMed  CAS  Google Scholar 

  140. Yamada K., Ji J. J., Yuan H., et al. (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science. 292, 1543–1546.

    Article  PubMed  CAS  Google Scholar 

  141. Guatteo E., Federici M., Siniscalchi A., Knopfel T., Mercuri N. B., and Bernardi G. (1998) Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia. J. Neurophysiol. 79, 1239–1245.

    PubMed  CAS  Google Scholar 

  142. Kulik A., Brockhaus J., Pedarzani P., and Ballanyi K. (2002) Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ. Neuroscience 110, 541–554.

    Article  PubMed  CAS  Google Scholar 

  143. Park Y. K., Jung S. J., Yoo J. E., Kwak J., Lim W., and Kim J. (2003) Effect of acute hypoxia on ATP-sensitive potassium currents in substantia gelatinosa neurons of juvenile rats. Pflugers Arch. 446, 600–606.

    Article  PubMed  CAS  Google Scholar 

  144. Mironov S. L., Langohr K., Haller M., and Richter D. W. (1998) Hypoxia activates ATP-dependent potassium channels in inspiratory neurons of neonatal mice. J. Physiol. 509, 755–766.

    Article  PubMed  CAS  Google Scholar 

  145. Mironov S. L. and Richter D. W. (2000) Intracellular signalling pathways modulate K(ATP) channels in inspiratory brainstem neurones and their hypoxic activation: involvement of metabotropic receptors, G-proteins and cytoskeleton. Brain Res. 853, 60–67.

    Article  PubMed  CAS  Google Scholar 

  146. Haller M., Mironov S. L., Karschin A., and Richter D. W. (2001) Dynamic activation of K(ATP) channels in rhythmically active neurons. J. Physiol. 537, 69–81.

    Article  PubMed  CAS  Google Scholar 

  147. Nowicky A. V. and Duchen M. R. (1998) Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. 507, 131–145.

    Article  PubMed  CAS  Google Scholar 

  148. Liu H., Moczydlowski E., and Haddad G. G. (1999) O(2) deprivation inhibits Ca(2+)-activated K(+) channels via cytosolic factors in mice neocortical neurons. J. Clin. Invest. 104, 577–588.

    PubMed  CAS  Google Scholar 

  149. Buckler K. J. (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol. 498, 649–662.

    PubMed  CAS  Google Scholar 

  150. Buckler K. J., Williams B. A., and Honore E. (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525, 135–142.

    Article  PubMed  CAS  Google Scholar 

  151. Hartness M. E., Lewis A., Searle G. J., O’Kelly I., Peers C., and Kemp P. J. (2001) Combined antisense and pharmacological approaches implicate hTASK as an airway O(2) sensing K(+) channel. J. Biol. Chem. 276, 26,499–26,508.

    Article  CAS  Google Scholar 

  152. Campanucci V. A., Fearon I. M., and Nurse C. A. (2003) A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance. J. Physiol. 548, 731–743.

    Article  PubMed  CAS  Google Scholar 

  153. Crill W. E. (1996) Persistent sodium current in mammalian central neurons. Annu. Rev. Physiol. 58, 349–362.

    Article  PubMed  CAS  Google Scholar 

  154. Ju Y. K., Saint D. A., and Gage P. W. (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J. Physiol. 497, 337–347.

    PubMed  CAS  Google Scholar 

  155. Hammarstrom A. K. and Gage P. W. (2002) Hypoxia and persistent sodium current. Eur. Biophys. J. 31, 323–330.

    Article  PubMed  CAS  Google Scholar 

  156. Horn E. M. and Waldrop T. G. (2000) Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons. J. Neurophysiol. 84, 2572–2581.

    PubMed  CAS  Google Scholar 

  157. Cummins T. R., Jiang C., and Haddad G. G. (1993) Human neocortical excitability is decreased during anoxia via sodium channel modulation. J. Clin. Invest. 91, 608–615.

    PubMed  CAS  Google Scholar 

  158. O’Reilly J. P., Cummins T. R., and Haddad G. G. (1997) Oxygen deprivation inhibits Na+ current in rat hippocampal neurones via protein kinase C. J. Physiol. 503, 479–488.

    Article  PubMed  CAS  Google Scholar 

  159. Kawai Y., Qi J., Comer A. M., Gibbons H., Win J., and Lipski J. (1999) Effects of cyanide and hypoxia on membrane currents in neurones acutely dissociated from the rostral ventrolateral medulla of the rat. Brain Res. 830, 246–257.

    Article  PubMed  CAS  Google Scholar 

  160. Mazza E. Jr., Edelman N. H., and Neubauer J. A. (2000) Hypoxic excitation in neurons cultured from the rostral ventrolateral medulla of the neonatal rat. J. Appl. Physiol. 88, 2319–2329.

    PubMed  Google Scholar 

  161. Lukyanetz E. A., Shkryl V. M., Kravchuk O. V., and Kostyuk P. G. (2003) Action of hypoxia on different types of calcium channels in hippocampal neurons. Biochim. Biophys. Acta. 1618, 33–38.

    Article  PubMed  CAS  Google Scholar 

  162. Lukyanetz E. A., Shkryl V. M., Kravchuk O. V., and Kostyuk P. G. (2003) Effect of hypoxia on calcium channels depends on extracellular calcium in CA1 hippocampal neurons. Brain Res. 980, 128–134.

    Article  PubMed  CAS  Google Scholar 

  163. Sun M. K. and Reis D. J. (1994) Hypoxia-activated Ca2+ currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro. J. Physiol. 476, 101–116.

    PubMed  CAS  Google Scholar 

  164. Mironov S. L. and Richter D. W. (1998) L-type Ca2+ channels in inspiratory neurones of mice and their modulation by hypoxia. J Physiol. 512, 75–87.

    Article  PubMed  CAS  Google Scholar 

  165. Elsen F. P. and Ramirez J. M. (1997) Hypoxia reduces the amplitude of voltage dependent calcium currents in the isolated respiratory system of mice. Soc. Neurosci. Abstr. 27, 495.11

    Google Scholar 

  166. Erdemli G. and Crunelli V. (2000) Release of monoamines and nitric oxide is involved in the modulation of hyperpolarization-activated inward current during acute thalamic hypoxia. Neuroscience 96, 565–574.

    Article  PubMed  CAS  Google Scholar 

  167. Mironov S. L., Langohr K., and Richter D. W. (2000) Hyperpolarization-activated current, Ih, in inspiratory brainstem neurons and its inhibition by hypoxia. Eur. J. Neurosci. 12, 520–526.

    Article  PubMed  CAS  Google Scholar 

  168. Inoue M., Fujishiro N., and Imanaga I. (1999) Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J. Physiol. 519, 385–396.

    Article  PubMed  CAS  Google Scholar 

  169. Lees G. J. (1991) Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res. Brain Res. Rev. 16, 283–300.

    Article  PubMed  CAS  Google Scholar 

  170. Luhmann H. J. (1996) Ischemia and lesion induced imbalances in cortical function. Prog. Neurobiol. 48, 131–166.

    Article  PubMed  CAS  Google Scholar 

  171. Jha A. and Deshpande S. B. (2003) Aglycemia and ischemia depress spinal synaptic transmission via inhibitory systems involving NMDA receptors. Eur. J. Pharmacol. 481, 189–196.

    Article  PubMed  CAS  Google Scholar 

  172. Deshpande S. B. and Jha A. (2004) Aglycemia and ischemia depress monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro by involving different types of 5-hydroxytryptamine receptors. Neurosci. Lett. 372, 167–172.

    Article  PubMed  CAS  Google Scholar 

  173. Xu Z. C. and Pulsinelli W. A. (1996) Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study. J. Neurophysiol. 76, 1689–1697.

    PubMed  CAS  Google Scholar 

  174. Hershkowitz N., Katchman A. N., and Veregge S. (1993) Site of synaptic depression during hypoxia: a patch-clamp analysis. J. Neurophysiol. 69, 432–441.

    PubMed  CAS  Google Scholar 

  175. Coelho J. E., de Mendonca A., and Ribeiro J. A. (2000) Presynaptic inhibitory receptors mediate the depression of synaptic transmission upon hypoxia in rat hippocampal slices. Brain Res. 869, 158–165.

    Article  PubMed  CAS  Google Scholar 

  176. Frenguelli B. G., Llaudet E., and Dale N. (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem. 86, 1506–1515.

    Article  PubMed  CAS  Google Scholar 

  177. Pearson T. and Frenguelli B. G. (2004) Adrenoceptor subtype-specific acceleration of the hypoxic depression of excitatory synaptic transmission in area CA1 of the rat hippocampus. Eur. J. Neurosci. 20, 1555–1565.

    Article  PubMed  Google Scholar 

  178. Hentschel S., Lewerenz A., and Nieber K. (2003) Activation of A(3) receptors by endogenous adenosine inhibits synaptic transmission during hypoxia in rat cortical neurons. Restor. Neurol. Neurosci. 21, 55–63.

    PubMed  CAS  Google Scholar 

  179. Centonze D., Saulle E., Pisani A., Bernardi G., and Calabresi P. (2001) Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia. Brain 124, 1855–1865.

    Article  PubMed  CAS  Google Scholar 

  180. Pierrefiche O., Bischoff A. M., Richter D. W., and Spyer K. M. (1997) Hypoxic response of hypoglossal motoneurones in the in vivo cat. J. Physiol. 505, 785–795.

    Article  PubMed  CAS  Google Scholar 

  181. Richter D. W., Bischoff A., Anders K., Bellingham M., and Windhorst U. (1991) Response of the medullary respiratory network of the cat to hypoxia. J. Physiol. 443, 231–256.

    PubMed  CAS  Google Scholar 

  182. Lieske S. P., Thoby-Brisson M., Telgkamp P., and Ramirez J. M. (2000) Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat. Neurosci. 3, 600–607.

    Article  PubMed  CAS  Google Scholar 

  183. Hammond C., Crepel V., Gozlan H., and Ben-Ari Y. (1994) Anoxic LTP sheds light on the multiple facets of NMDA receptors. Trends Neurosci. 17, 497–503.

    Article  PubMed  CAS  Google Scholar 

  184. Hellweg R., von Arnim C. A., Buchner M., Huber R., and Riepe M. W. (2003) Neuroprotection and neuronal dysfunction upon repetitive inhibition of oxidative phosphorylation. Exp. Neurol. 183, 346–354.

    Article  PubMed  CAS  Google Scholar 

  185. Rosen A. S. and Morris M. E. (1993) Anoxic depression of excitatory and inhibitory postsynaptic potentials in rat neocortical slices. J. Neurophysiol. 69, 109–117.

    PubMed  CAS  Google Scholar 

  186. Kasa P., Rakonczay Z., and Gulya K. (1997) The cholinergic system in Alzheimer’s disease. Prog. Neurobiol. 52, 511–535.

    Article  PubMed  CAS  Google Scholar 

  187. Porkka-Heiskanen T., Strecker R. E., Thakkar M., Bjorkum A. A., Greene R. W., and McCarley R. W. (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268.

    Article  PubMed  CAS  Google Scholar 

  188. Fowler J. C. (1989) Adenosine antagonists delay hypoxia-induced depression of neuronal activity in hippocampal brain slice. Brain Res. 490, 378–384.

    Article  PubMed  CAS  Google Scholar 

  189. Gribkoff V. K., Bauman L. A., and VanderMaelen C. P. (1990) The adenosine antagonist 8-cyclopentyltheophylline reduces the depression of hippocampal neuronal responses during hypoxia. Brain Res. 512, 353–357.

    Article  PubMed  CAS  Google Scholar 

  190. Canhao P., de Mendonca A., and Ribeiro J. A. (1994) 1,3-Dipropyl-8-cyclopentylxanthine attenuates the NMDA response to hypoxia in the rat hippocampus. Brain Res. 661, 265–273.

    Article  PubMed  CAS  Google Scholar 

  191. Dale N., Pearson T., and Frenguelli B. G. (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J. Physiol. 526, 143–155.

    Article  PubMed  CAS  Google Scholar 

  192. Pearson T., Currie A. J., Etherington L. A., et al. (2003) Plasticity of purine release during cerebral ischemia: clinical implications? J. Cell. Mol. Med. 7, 362–375.

    Article  PubMed  CAS  Google Scholar 

  193. Zetterstrom T., Vernet L., Ungerstedt U., Tossman U., Jonzon B., and Fredholm B. B. (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci. Lett. 29, 111–115.

    Article  PubMed  CAS  Google Scholar 

  194. Latini S., Bordoni F., Corradetti R., Pepeu G., and Pedata F. (1998) Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Brain Res. 794, 325–328.

    Article  PubMed  CAS  Google Scholar 

  195. de Mendonca A. and Ribeiro J. A. (1997) Contribution of metabotropic glutamate receptors to the depression of excitatory postsynaptic potentials during hypoxia. Neuroreport 8, 3667–3671.

    Article  PubMed  Google Scholar 

  196. Doherty J. and Dingledine R. (1997) Regulation of excitatory input to inhibitory interneurons of the dentate gyrus during hypoxia. J. Neurophysiol. 77, 393–404.

    PubMed  CAS  Google Scholar 

  197. Cherniack N. S., Edelman N. H., and Lahiri S. (1971) The effect of hypoxia and hypercapnia on respiratory neuron activity and cerebral aerobic metabolism. Chest 59, 29S.

  198. Haddad G. G. and Mellins R. B. (1984) Hypoxia and respiratory control in early life. Annu. Rev. Physiol. 46, 629–643.

    Article  PubMed  CAS  Google Scholar 

  199. Bureau M. A., Zinman R., Foulon P., and Begin R. (1984) Diphasic ventilatory response to hypoxia in newborn lambs. J. Appl. Physiol. 56, 84–90.

    PubMed  CAS  Google Scholar 

  200. St. John W. M. and Bianchi A. L. (1985) Responses of bulbospinal and laryngeal respiratory neurons to hypercapnia and hypoxia. J. Appl. Physiol. 59, 1201–1207.

    PubMed  CAS  Google Scholar 

  201. Fregosi R. F., Knuth S. L., Ward D. K., and Bartlett D. Jr. (1987) Hypoxia inhibits abdominal expiratory nerve activity. J. Appl. Physiol. 63, 211–220.

    PubMed  CAS  Google Scholar 

  202. Maruyama R., Yoshida A., and Fukuda Y. (1989) Differential sensitivity to hypoxic inhibition of respiratory processes in the anesthetized rat. Jpn. J. Physiol. 39, 857–871.

    PubMed  CAS  Google Scholar 

  203. Neubauer J. A., Melton J. E., and Edelman N. H. (1990) Modulation of respiration during brain hypoxia. J. Appl. Physiol. 68, 441–451.

    PubMed  CAS  Google Scholar 

  204. Trippenbach T., Richter D. W., and Acker H. (1990) Hypoxia and ion activities within the brain stem of newborn rabbits. J. Appl. Physiol. 68, 2494–2503.

    PubMed  CAS  Google Scholar 

  205. Kahraman L. and Thach B. T. (2004) Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS. J. Appl. Physiol. 97, 669–674.

    Article  PubMed  Google Scholar 

  206. Gozal D., Gozal E., Reeves S. R., and Lipton A. J. (2002) Gasping and autoresuscitation in the developing rat: effect of antecedent intermittent hypoxia. J. Appl. Physiol. 92, 1141–1144.

    PubMed  Google Scholar 

  207. Deshpande P., Khurana A., Hansen P., Wilkins D., and Thach B. T. (1999) Failure of autoresuscitation in weanling mice: significance of cardiac glycogen and heart rate regulation. J. Appl. Physiol. 87, 203–210.

    PubMed  CAS  Google Scholar 

  208. Harper R. M., Kinney H. C., Fleming P. J., and Thach B. T. (2000) Sleep influences on homeostatic functions: implications for sudden infant death syndrome. Respir. Physiol. 119, 123–132.

    Article  PubMed  CAS  Google Scholar 

  209. Hunt C. E. (1992) The cardiorespiratory control hypothesis for sudden infant death syndrome. Clin. Perinatol. 19, 757–771.

    PubMed  CAS  Google Scholar 

  210. Poets C. F., Meny R. G., Chobanian M. R., and Bonofiglo R. E. (1999) Gasping and other cardiorespiratory patterns during sudden infant deaths. Pediatr. Res. 45, 350–354.

    Article  PubMed  CAS  Google Scholar 

  211. Kara T., Narkiewicz K., and Somers V. K. (2003) Chemoreflexes: physiology and clinical implications. Acta Physiol. Scand. 177, 377–384.

    Article  PubMed  CAS  Google Scholar 

  212. Solomon I. C. (2004) Ionotropic excitatory amino acid receptors in pre-Botzinger complex play a modulatory role in hypoxia-induced gasping in vivo. J. Appl. Physiol. 96, 1643–1650.

    Article  PubMed  CAS  Google Scholar 

  213. Solomon I. C. (2005) Glutamate neurotransmission is not required for, but may modulate, hypoxic sensitivity of pre-Botzinger complex in vivo. J. Neurophysiol. 93, 1278–1284.

    Article  PubMed  CAS  Google Scholar 

  214. Ramirez J. M., Quellmalz U. J., and Richter D. W. (1996) Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J. Physiol. 491, 799–812.

    PubMed  CAS  Google Scholar 

  215. Telgkamp P. and Ramirez J. M. (1999) Differential responses of respiratory nuclei to anoxia in rhythmic brain stem slices of mice. J. Neurophysiol. 82, 2163–2170.

    PubMed  CAS  Google Scholar 

  216. Ballanyi K., Volker A., and Richter D. W. (1994) Anoxia induced functional inactivation of neonatal respiratory neurones in vitro. Neuroreport 6, 165–168.

    Article  PubMed  CAS  Google Scholar 

  217. Richter D. W., Schmidt-Garcon P., Pierrefiche O., Bischoff A. M., and Lalley P. M. (1999) Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J. Physiol. 514, 567–578.

    Article  PubMed  CAS  Google Scholar 

  218. Fazekas J. F., Alexander F. A. D., and Himwich H. E. (1941). Tolerance of the newborn to anoxia. J. Physiol. Lond. 134,282–287

    Google Scholar 

  219. Adolph E. F. (1969) Regulations during survival without oxygen in infant mammals. Respir. Physiol. 7, 356–368.

    Article  PubMed  CAS  Google Scholar 

  220. Jacobi M. S. and Thach B. T. (1989) Effect of maturation on spontaneous recovery from hypoxic apnea by gasping. J. Appl. Physiol. 66, 2384–2390.

    PubMed  CAS  Google Scholar 

  221. Fewell J. E. and Wong V. H. (2002) Interleukin-1beta-induced fever does not alter the ability of 5- to 6-day-old rat pups to autoresuscitate from hypoxia-induced apnoea. Exp. Physiol. 87, 17–24.

    Article  PubMed  Google Scholar 

  222. Brockhaus J., Ballanyi K., Smith J. C., and Richter D. W. (1993) Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats. J. Physiol. 462, 421–445.

    PubMed  CAS  Google Scholar 

  223. Voipio J. and Ballanyi K. (1997) Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats. J. Physiol. 499, 527–542.

    PubMed  CAS  Google Scholar 

  224. Volker A., Ballanyi K., and Richter D. W. (1995) Anoxic disturbance of the isolated respiratory network of neonatal rats. Exp. Brain Res. 103, 9–19.

    Article  PubMed  CAS  Google Scholar 

  225. Ballanyi K., Onimaru H., and Homma I. (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog. Neurobiol. 59, 583–634.

    Article  PubMed  CAS  Google Scholar 

  226. Greer J. J. and Carter J. E. (1995) Effects of cyanide on the neural mechanisms controlling breathing in the neonatal rat in vitro. Neurotoxicology 16, 211–215.

    PubMed  CAS  Google Scholar 

  227. England S. J., Melton J. E., Douse M. A., and Duffin J. (1995) Activity of respiratory neurons during hypoxia in the chemodenervated cat. J. Appl. Physiol. 78, 856–861.

    PubMed  CAS  Google Scholar 

  228. Morawietz G., Ballanyi K., Kuwana S., and Richter D. W. (1995) Oxygen supply and ion homeostasis of the respiratory network in the in vitro perfused brainstem of adult rats. Exp. Brain Res. 106, 265–274.

    Article  PubMed  CAS  Google Scholar 

  229. Sears T. A. (1964) Investigations on respiratory motoneurones of the thoracic spinal cord. Prog. Brain Res. 12, 259–273.

    PubMed  CAS  Google Scholar 

  230. St. John W. M., Bartlett D. Jr. (1979) Comparison of phrenic motoneuron responses to hypercapnia and isocapnic hypoxia. J. Appl. Physiol. 46, 1096–1102.

    PubMed  CAS  Google Scholar 

  231. Hwang J. C., Bartlett D. Jr., and St. John W. M. (1983) Characterization of respiratory-modulated activities of hypoglossal motoneurons. J. Appl. Physiol. 55, 793–798.

    PubMed  CAS  Google Scholar 

  232. St John W. M. and Wang S. C. (1977) Alteration from apneusis to more regular rhythmic respiration in decerebrate cats. Respir. Physiol. 31, 91–106.

    Article  PubMed  CAS  Google Scholar 

  233. Bergmann F. and Keller B. U. (2004) Impact of mitochondrial inhibition on excitability and cytosolic Ca2+ levels in brainstem motoneurones from mouse. J. Physiol. 555, 45–59.

    Article  PubMed  CAS  Google Scholar 

  234. McCrimmon D. R., Ramirez J. M., Alford S., and Zuperku E. J. (2000) Unraveling the mechanism for respiratory rhythm generation. Bioessays. 22, 6–9.

    Article  PubMed  CAS  Google Scholar 

  235. Smith J. C., Ellenberger H. H., Ballanyi K., Richter D. W., and Feldman J. L. (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.

    Article  PubMed  CAS  Google Scholar 

  236. Onimaru H. and Homma I. (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J. Neurosci. 23, 1478–1486

    PubMed  CAS  Google Scholar 

  237. Mellen N. M., Janczewski W. A., Bocchiaro C. M., and Feldman J. L. (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37, 821–826.

    Article  PubMed  CAS  Google Scholar 

  238. Peña F. and Ramirez J. M. (2002) Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J. Neurosci. 22, 11,055–11,064.

    Google Scholar 

  239. Peña F. and Ramirez J. M. (2004) Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J. Neurosci. 24, 7549–7556.

    Article  PubMed  CAS  Google Scholar 

  240. Ogilvie M. D., Gottschalk A., Anders K., Richter D. W., and Pack A. I. (1992) A network model of respiratory rhythmogenesis. Am. J. Physiol. 263, R962-R975.

    PubMed  CAS  Google Scholar 

  241. Ramirez J. M. and Lieske S. P. (2003) Commentary on the definition of eupnea and gasping. Respir. Physiol. Neurobiol. 139, 113–119.

    Article  PubMed  Google Scholar 

  242. Lieske S. P., Thoby-Brisson M., and Ramirez J. M. (2001) Reconfiguration of the central respiratory network under normoxic and hypoxic conditions. Adv. Exp. Med. Biol. 499, 171–178.

    PubMed  CAS  Google Scholar 

  243. Ramirez J. M., Quellmalz U. J., Wilken B., and Richter D. W. (1998) The hypoxic response of neurones within the in vitro mammalian respiratory network. J. Physiol. 507, 571–582.

    Article  PubMed  CAS  Google Scholar 

  244. Koshiya N. and Smith J. C. (1999) Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363.

    Article  PubMed  CAS  Google Scholar 

  245. Del Negro C. A., Morgado-Valle C., Hayes J. A., et al. (2005) Sodium and calcium-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453.

    Article  PubMed  CAS  Google Scholar 

  246. Hill A. (1991) Current concepts of hypoxic-ischemic cerebral injury in the term newborn. Pediatr. Neurol. 7, 317–325.

    Article  PubMed  CAS  Google Scholar 

  247. Latchaw R. E. and Truwit C. E. (1995) Imaging of perinatal hypoxic-ischemic brain injury. Semin. Pediatr. Neurol. 2, 72–89.

    Article  PubMed  CAS  Google Scholar 

  248. Roland E. H. and Hill A. (1995) Clinical aspects of perinatal hypoxic-ischemic brain injury. Semin. Pediatr. Neurol. 2, 57–71.

    Article  PubMed  CAS  Google Scholar 

  249. Suzuki R., Yamaguchi T., Li C. L., and Klatzo I. (1983) The effects of 5-minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol. (Berl). 60, 217–222.

    Article  CAS  Google Scholar 

  250. Doolette D. J. and Kerr D. I. (1995) Hyperexcitability in CA1 of the rat hippocampal slice following hypoxia or adenosine. Brain Res. 677, 127–137.

    Article  PubMed  CAS  Google Scholar 

  251. Crepel V., Hammond C., Chinestra P., Diabira D., and Ben-Ari Y. (1993) A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. J. Neurophysiol. 70, 2045–2055.

    PubMed  CAS  Google Scholar 

  252. Crepel V., Hammond C., Krnjevic K., Chinestra P., and Ben-Ari Y. (1993) Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J. Neurophysiol. 69, 1774–1778.

    PubMed  CAS  Google Scholar 

  253. Gozlan H., Diabira D., Chinestra P., and Ben-Ari Y. (1994) Anoxic LTP is mediated by the redox modulatory site of the NMDA receptor. J. Neurophysiol. 72, 3017–3022.

    PubMed  CAS  Google Scholar 

  254. Hsu K. S. and Huang C. C. (1997) Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus. Br. J. Pharmacol. 122, 671–681.

    Article  PubMed  CAS  Google Scholar 

  255. Lyubkin M., Durand D. M., and Haxhiu M. A. (1997) Interaction between tetanus long-term potentiation and hypoxia-induced potentiation in the rat hippocampus. J. Neurophysiol. 78, 2475–2482.

    PubMed  CAS  Google Scholar 

  256. Calabresi P., Saulle E., Centonze D., Pisani A., Marfia G. A., and Bernardi G. (2002) Postischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 125, 844–860.

    Article  PubMed  Google Scholar 

  257. Schmidt-Kastner R. and Freund T. F. (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40, 599–636.

    Article  PubMed  CAS  Google Scholar 

  258. Vyskocil F., Kritz N., and Bures J. (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res. 39, 255–259.

    Article  PubMed  CAS  Google Scholar 

  259. Muller M. and Somjen G. G. (2000) Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices. J. Neurophysiol. 84, 1869–1880.

    PubMed  CAS  Google Scholar 

  260. Leão A. A. P. (1947), Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol 10, 409–414.

    PubMed  Google Scholar 

  261. Marshall W. H. (1959) Spreading cortical depression of Leao. Physiol. Rev. 39, 239–279.

    PubMed  CAS  Google Scholar 

  262. Nicholson C. (1984) Comparative neurophysiology of spreading depression in the cerebellum. An. Acad. Bras. Cienc. 56, 481–494.

    PubMed  CAS  Google Scholar 

  263. Somjen G. G., Aitken P. G., Czeh G. L., Herreras O., Jing J., and Young J. N. (1992) Mechanism of spreading depression: a review of recent findings and a hypothesis. Can. J. Physiol. Pharmacol. 70 Suppl, S248-S254.

    PubMed  CAS  Google Scholar 

  264. Somjen G. G. (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096.

    PubMed  CAS  Google Scholar 

  265. Bahar S., Fayuk D., Somjen G. G., Aitken P. G., and Turner D. A. (2000) Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. J. Neurophysiol. 84, 311–324.

    PubMed  CAS  Google Scholar 

  266. Hansen A. J. and Olsen C. E. (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol. Scand. 108, 355–365.

    PubMed  CAS  Google Scholar 

  267. Perez-Pinzon M. A., Tao L., and Nicholson C. (1995) Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. J. Neurophysiol. 74, 565–573.

    PubMed  CAS  Google Scholar 

  268. Sykova E., Svoboda J., Polak J., and Chvatal A. (1994) Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J. Cereb. Blood Flow Metab. 14, 301–311.

    PubMed  CAS  Google Scholar 

  269. Chebabo S. R., Hester M. A., Jing J., Aitken P. G., and Somjen G. G. (1995) Interstitial space, electrical resistance and ion concentrations during hypotonia of rat hippocampal slices. J. Physiol. 487 (Pt 3), 685–97.

    PubMed  CAS  Google Scholar 

  270. Jing J., Aitken P. G., and Somjen G. G. (1994) Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. J. Neurophysiol. 71, 2548–2551.

    PubMed  CAS  Google Scholar 

  271. Kreisman N. R., LaManna J. C., Liao S. C., Yeh E. R., and Alcala J. R. (1995) Light transmittance as an index of cell volume in hippocamppal slices: optical differences of interfaced and submerged positions. Brain Res. 693, 179–186.

    Article  PubMed  CAS  Google Scholar 

  272. Turner D. A., Aitken P. G., and Somjen G. G. (1995) Optical mapping of transluence changes in rat hippocampal slices during hypoxia. Neurosci. Lett. 195, 209–213.

    Article  PubMed  CAS  Google Scholar 

  273. Melzian D., Scheufler E., Grieshaber M., and Tegtmeier F. (1996) Tissue swelling and intracellular pH in the CA1 region of anoxic rat hippocampus. J. Neurosci. Methods 65, 183–187.

    Article  PubMed  CAS  Google Scholar 

  274. Kreisman N. R., Soliman S., and Gozal D. (2000) Regional differences in hypoxic depolarization and swelling in hippocampal slices. J. Neurophysiol. 83, 1031–1038.

    PubMed  CAS  Google Scholar 

  275. Hossmann K. A. (1971) Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. Exp. Neurol. 32, 163–175.

    Article  PubMed  CAS  Google Scholar 

  276. Korf J., Klein H. C., Venema K., and Postema F. (1988) Increases in striatal and hippocampal impedance and extracellular levels of amino acids by cardiac arrest in freely moving rats. J. Neurochem. 50, 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  277. Astrup J., Siesjo B. K., and Symon L. (1981) Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12, 723–725.

    PubMed  CAS  Google Scholar 

  278. Choi D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469.

    Article  PubMed  CAS  Google Scholar 

  279. Kass I. S. and Lipton P. (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. 332:459–472.

    PubMed  CAS  Google Scholar 

  280. Roberts E. L. Jr. and Sick T. J. (1988) Calcium-sensitive recovery of extracellular potassium and synaptic transmission in rat hippocampal slices exposed to brief anoxia. Brain Res. 456, 113–119.

    Article  PubMed  CAS  Google Scholar 

  281. Siesjo B. K. (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg. 77, 337–354.

    PubMed  CAS  Google Scholar 

  282. Leist M. and Nicotera P. (1998) Calcium and neuronal death. Rev. Physiol Biochem. Pharmacol. 132, 79–125.

    PubMed  CAS  Google Scholar 

  283. Chow E. and Haddad G. G. (1998) Differential effects of anoxia and glutamate on cultured neocortical neurons. Exp. Neurol. 150, 52–59.

    Article  PubMed  CAS  Google Scholar 

  284. Kristian T. and Siesjo B. K. (1996) Calcium-related damage in ischemia. Life Sci. 59, 357–367.

    Article  PubMed  CAS  Google Scholar 

  285. Choi D. W. (1994) Calcium and excitotoxic neuronal injury. Ann. NY Acad. Sci. 747, 162–171.

    Article  PubMed  CAS  Google Scholar 

  286. Tapia R., Medina-Ceja L., and Peña F. (1999) On the relationship between extracellular glutamate, hyperexcitation and neurodegeneration, in vivo. Neurochem. Int. 34, 23–31.

    Article  PubMed  CAS  Google Scholar 

  287. Silver I. and Erecinska M. (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv. Exp. Med. Biol. 454, 7–16.

    PubMed  CAS  Google Scholar 

  288. Calabresi P., Centonze D., Pisani A., Cupini L., and Bernardi G. (2003) Synaptic plasticity in the ischaemic brain. Lancet Neurol. 2, 622–629.

    Article  PubMed  CAS  Google Scholar 

  289. LoPachin R. M., Gaughan C. L., Lehning E. J., Weber M. L., and Taylor C. P. (2001) Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. Neuroscience. 103, 971–983.

    Article  PubMed  CAS  Google Scholar 

  290. Peña F. and Tapia R. (1999) Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study. J. Neurochem. 72, 2006–2014.

    Article  PubMed  Google Scholar 

  291. Peña F. and Tapia R. (2000) Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience 101, 547–561.

    Article  PubMed  Google Scholar 

  292. Boening J. A., Kass I. S., Cottrell J. E., and Chambers G. (1989) The effect of blocking sodium influx on anoxic damage in the rat hippocampal slice. Neuroscience 33, 263–268.

    Article  PubMed  CAS  Google Scholar 

  293. Haigney M. C., Lakatta E. G., Stern M. D., and Silverman H. S. (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90, 391–399.

    PubMed  CAS  Google Scholar 

  294. Weber M. L. and Taylor C. P. (1994) Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Res. 664, 167–177.

    Article  PubMed  CAS  Google Scholar 

  295. Fried E., Amorim P., Chambers G., Cottrell J. E., and Kass I. S. (1995) The importance of sodium for anoxic transmission damage in rat hippocampal slices: mechanisms of protection by lidocaine. J. Physiol. 489, 557–565.

    PubMed  CAS  Google Scholar 

  296. Friedman J. E. and Haddad G. G. (1994) Removal of extracellular sodium prevents anoxia-induced injury in freshly dissociated rat CA1 hippocampal neurons. Brain Res. 641, 57–64.

    Article  PubMed  CAS  Google Scholar 

  297. Toner C. C. and Stamford J. A. (1997) Sodium channel blockade unmasks two temporally distinct mechanisms of striatal dopamine release during hypoxia/hypoglycaemia in vitro. Neuroscience 81, 999–1007.

    Article  PubMed  CAS  Google Scholar 

  298. Banasiak K. J., Burenkova O., and Haddad G. G. (2004) Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 126, 31–44.

    Article  PubMed  CAS  Google Scholar 

  299. Peers C. and Kemp P. J. (2004) Ion channel regulation by chronic hypoxia in models of acute oxygen sensing. Cell Calcium 36, 341–348.

    Article  PubMed  CAS  Google Scholar 

  300. Semenza G. L. (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88, 1474–1480.

    PubMed  CAS  Google Scholar 

  301. Semenza G. L. (2000) Oxygen-regulated transcription factors and their role in pulmonary disease. Respir. Res. 1, 159–162.

    Article  PubMed  CAS  Google Scholar 

  302. Sharp F. R. and Bernaudin M. (2004) HIF1 and oxygen sensing in the brain. Nat. Rev. Neurosci. 5, 437–448.

    Article  PubMed  CAS  Google Scholar 

  303. Jiang B. H., Rue E., Wang G. L., Roe R., and Semenza G. L. (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17,771–17,778.

    CAS  Google Scholar 

  304. Yu A. Y., Frid M. G., Shimoda L. A., Wiener C. M., Stenmark K., and Semenza G. L. (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am. J. Physiol. 275, L818-L826.

    PubMed  CAS  Google Scholar 

  305. Xia Y., Fung M. L., O’Reilly J. P., and Haddad G. G. (2000) Increased neuronal excitability after long-term O(2) deprivation is mediated mainly by sodium channels. Brain Res. Mol. Brain Res. 76, 211–219.

    Article  PubMed  CAS  Google Scholar 

  306. Hance A. J., Robin E. D., Simon L. M., Alexander S., Herzenberg L. A., and Theodore J. (1980) Regulation of glycolytic enzyme activity during chronic hypoxia by changes in ratelimiting enzyme content. Use of monoclonal antibodies to quantitate changes in pyruvate kinase content. J. Clin. Invest. 66, 1258–1264.

    PubMed  CAS  Google Scholar 

  307. Ptashne K. A., Morin M. E., Hance A., and Robin E. D. (1985) Increased biosynthesis of pyruvate kinase under hypoxic conditions in mammalian cells. Biochim. Biophys. Acta. 844, 19–23.

    Article  PubMed  CAS  Google Scholar 

  308. Xia Y. and Haddad G. G. (1999) Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience. 94, 1231–1243.

    Article  PubMed  CAS  Google Scholar 

  309. Neubauer J. A. (2001) Physiological and pathophysiological responses to intermittent hypoxia. J. Appl. Physiol. 90, 1593–1599.

    PubMed  CAS  Google Scholar 

  310. Young A., Home M., Churchward T., Freezer N., Holmes P., and Ho M. (2002) Comparison of sleep disturbance in mild versus severe Parkinson’s disease. Sleep. 25, 573–577.

    PubMed  Google Scholar 

  311. Montplaisir J., Bedard M. A., Richer F., and Rouleau I. (1992) Neurobehavioral manifestations in obstructive sleep apnea syndrome before and after treatment with continuous positive airway pressure. Sleep. 15, S17-S19.

    PubMed  CAS  Google Scholar 

  312. Beebe D. W. and Gozal D. (2002) Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J. Sleep. Res. 11, 1–16.

    Article  PubMed  Google Scholar 

  313. Carpagnano G. E., Kharitonov S. A., Resta O., Foschino-Barbaro M. P., Gramiccioni E., and Barnes P. J. (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest. 122, 1162–1167.

    Article  PubMed  CAS  Google Scholar 

  314. Macey P. M., Henderson L. A., Macey K. E., et al. (2002) Brain morphology associated with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 166, 1382–1387.

    Article  PubMed  Google Scholar 

  315. Belik J., Sienko A., and Light R. B. (1990) The effect of repeated intermittent hypoxia on pulmonary vasoconstriction in the newborn. Can. J. Physiol. Pharmacol. 68, 355–362.

    PubMed  CAS  Google Scholar 

  316. Irlbeck M., Iwai T., Lerner T., and Zimmer H. G. (1997) Effects of angiotensin II receptor blockade on hypoxia-induced right ventricular hypertrophy in rats. J. Mol. Cell Cardiol. 29, 2931–2939.

    Article  PubMed  CAS  Google Scholar 

  317. McGuire M. and Bradford A. (1999) Chronic intermittent hypoxia increases haematocrit and causes right ventricular hypertrophy in the rat. Respir. Physiol. 117, 53–58.

    Article  PubMed  CAS  Google Scholar 

  318. Nattie E. E., Bartlett D. Jr., and Johnson K. (1978) Pulmonary hypertension and right ventricular hypertrophy caused by intermittent hypoxia and hypercapnia in the rat. Am. Rev. Respir. Dis. 118, 653–658.

    PubMed  CAS  Google Scholar 

  319. Nattie E. E. and Doble E. A. (1984) Threshold of intermittent hypoxia-induced right ventricular hypertrophy in the rat. Respir. Physiol. 56, 253–259.

    Article  PubMed  CAS  Google Scholar 

  320. Faridy E. E., Sanii M. R., and Thliveris J. A. (1988) Fetal lung growth: influence of maternal hypoxia and hyperoxia in rats. Respir. Physiol. 73, 225–241.

    Article  PubMed  CAS  Google Scholar 

  321. Schwartz J. E., Kovach A., Meyer J., McConnell C., and Iwamoto H. S. (1998) Brief, intermittent hypoxia restricts fetal growth in Sprague-Dawley rats. Biol. Neonate. 73, 313–319.

    Article  PubMed  CAS  Google Scholar 

  322. Gozal E., Row B. W., Schurr A., and Gozal D. (2001) Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci Lett. 2001 305(3), 197–201.

    Article  PubMed  CAS  Google Scholar 

  323. Row B. W., Kheirandish L., Neville J. J., and Gozal D. (2002) Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr. Res. 52, 449–453.

    PubMed  Google Scholar 

  324. Li R. C., Row B. W., Gozal E., et al. (2003) Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat. Am. J. Respir. Crit. Care Med. 168, 469–475.

    Article  PubMed  Google Scholar 

  325. Li R. C., Row B. W., Kheirandish L., et al. (2004) Nitric oxide synthase and intermittent hypoxia-induced spatial learning deficits in the rat. Neurobiol. Dis. 17, 44–53.

    Article  PubMed  CAS  Google Scholar 

  326. Xu W., Chi L., Row B. W., et al. (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 126, 313–323.

    Article  PubMed  CAS  Google Scholar 

  327. Godukhin O., Savin A., Kalemenev S., and Levin S. (2002) Neuronal hyperexcitability induced by repeated brief episodes of hypoxia in rat hippocampal slices: involvement of ionotropic glutamate receptors and L-type Ca(2+) channels. Neuropharmacology. 42, 459–466.

    Article  PubMed  CAS  Google Scholar 

  328. Guntheroth W. G. and Kawabori I. (1975) Hypoxic apnea and gasping. J. Clin. Invest. 56, 1371–1377.

    Article  PubMed  CAS  Google Scholar 

  329. Fewell J. E., Smith F. G., Ng V. K., Wong V. H., and Wang Y. (2000) Postnatal age influences the ability of rats to autoresuscitate from hypoxic-induced apnea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R39-R46.

    PubMed  CAS  Google Scholar 

  330. Meerson F. Z., Ustinova E. E., and Orlova E. H. (1987) Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin. Cardiol. 10, 783–789.

    Article  PubMed  CAS  Google Scholar 

  331. Meerson F. Z., Ustinova E. E., and Manukhina E. B. (1989) Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotropic effect. Biomed. Biochim. Acta. 48, S83-S88.

    PubMed  CAS  Google Scholar 

  332. Kitaev M. I., Aitbaev K. A., and Liamtsev V. T. (1999) Effect of hypoxic hypoxia on development of atherosclerosis in rabbits Aviakosm. Ekolog. Med. 33, 54–57.

    CAS  Google Scholar 

  333. Knaupp W., Khilnani S., Sherwood J., Scharf S., and Steinberg H. (1992) Erythropoietin response to acute normobaric hypoxia in humans. J. Appl. Physiol. 73, 837–840.

    PubMed  CAS  Google Scholar 

  334. Koistinen P. O., Rusko H., Irjala K., et al. (2000) EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med. Sci. Sports Exerc. 32, 800–804.

    Article  PubMed  CAS  Google Scholar 

  335. Rutherford C. J., Schneider T. J., Dempsey H., Kirn D. H., Brugnara C., and Goldberg M. A. (1994) Efficacy of different dosing regimens for recombinant human erythropoietin in a simulated perisurgical setting: the importance of iron availability in optimizing response. Am. J. Med. 96, 139–145.

    Article  PubMed  CAS  Google Scholar 

  336. Moore-Gillon J. C. and Cameron I. R. (1985) Right ventricular hypertrophy and polycythaemia in rats after intermittent exposure to hypoxia. Clin. Sci. 69, 595–599.

    PubMed  CAS  Google Scholar 

  337. Cao K. Y., Zwillich C. W., Berthon-Jones M., and Sullivan C. E. (1992) Increased normoxic ventilation induced by repetitive hypoxia in conscious dogs. J. Appl. Physiol. 73, 2083–2088.

    PubMed  CAS  Google Scholar 

  338. Kinkead R., Zhan W. Z., Prakash Y. S., Bach K. B., Sieck G. C., and Mitchell G. S. (1998) Cervical dorsal rhizotomy enhances serotonergic innervation of phrenic motoneurons and serotonin-dependent long-term facilitation of respiratory motor output in rats. J. Neurosci. 18, 8436–8443.

    PubMed  CAS  Google Scholar 

  339. Turner D. L. and Mitchell G. S. (1997) Long-term facilitation of ventilation following repeated hypoxic episodes in awake goats. J. Physiol. 499, 543–550.

    PubMed  CAS  Google Scholar 

  340. Blitz D. M. and Ramirez J. M. (2002) Long-term modulation of respiratory network activity following anoxia in vitro. J. Neurophysiol. 87, 2964–2971.

    PubMed  Google Scholar 

  341. Coles S. K. and Dick T. E. Neurones in the ventrolateral pons are required for post-hypoxic frequency decline in rats. J. Physiol. 497, 79–94.

  342. Millhorn D. E., Eldridge F. L., and Waldrop T. G. (1980) Prolonged stimulation of respiration by endogenous central serotonin. Respir. Physiol. 42, 171–188.

    Article  PubMed  CAS  Google Scholar 

  343. Hayashi F., Coles S. K., Bach K. B., Mitchell G. S., and McCrimmon D. R. (1993) Time-dependent phrenic nerve responses to carotid afferent activation: intact vs decerebellate rats. Am. J. Physiol. 265, R811-R819.

    PubMed  CAS  Google Scholar 

  344. Fregosi R. F. and Mitchell G. S. (1994) Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J. Physiol. 477, 469–479.

    PubMed  Google Scholar 

  345. Bach K. B. and Mitchell G. S. (1998) Hypercapnia-induced long-term depression of respiratory activity requires alpha2-adrenergic receptors. J. Appl. Physiol. 84, 2099–2105.

    Article  PubMed  CAS  Google Scholar 

  346. Baker T. L. and Mitchell G. S. (2000) Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J. Physiol. 529, 215–219.

    Article  PubMed  CAS  Google Scholar 

  347. Baker T. L., Fuller D. D., Zabka A. G., and Mitchell G. S. (2001) Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia. Respir. Physiol. 129, 25–35.

    Article  PubMed  CAS  Google Scholar 

  348. Babcock M., Shkoukani M., Aboubakr S. E., and Badr M. S. (2003) Determinants of long-term facilitation in humans during NREM sleep. J. Appl. Physiol. 94, 53–59.

    PubMed  Google Scholar 

  349. Fuller D. D., Bach K. B., Baker T. L., Kinkead R., and Mitchell G. S. (2000) Long term facilitation of phrenic motor output. Respir. Physiol. 121, 135–146.

    Article  PubMed  CAS  Google Scholar 

  350. Powell F. L., Milsom W. K., and Mitchell G. S. (1998) Time domains of the hypoxic ventilatory response. Respir. Physiol. 112, 123–134.

    Article  PubMed  CAS  Google Scholar 

  351. Zabka A. G., Behan M., and Mitchell G. S. (2001) Long term facilitation of respiratory motor output decreases with age in male rats. J. Physiol. 531, 509–514.

    Article  PubMed  CAS  Google Scholar 

  352. Zabka A. G., Behan M., and Mitchell G. S. (2001) Time-dependent hypoxic respiratory responses in female rats are influenced by age and by the estrus cycle. J. Appl. Physiol. 91, 2831–2838.

    PubMed  CAS  Google Scholar 

  353. Mironov S. L., Hartelt N., and Ivannikov M. V. (2005) Mitochondrial K(ATP) channels in respiratory neurons and their role in the hypoxic facilitation of rhythmic activity. Brain Res. 1033, 20–27.

    Article  PubMed  CAS  Google Scholar 

  354. Baker-Herman T. L. and Mitchell G. S. (2002) Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. J. Neurosci. 22, 6239–6246.

    PubMed  CAS  Google Scholar 

  355. Baker-Herman T. L., Fuller D. D., Bavis R. W., et al. (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci. 7, 48–55.

    Article  PubMed  CAS  Google Scholar 

  356. Bixler E. O., Vgontzas A. N., Lin H. M., et al. (2001) Prevalence of sleep-disordered breathing in women: effects of gender. Am. J. Respir. Crit. Care Med. 163, 608–613.

    PubMed  CAS  Google Scholar 

  357. Gozal E. and Gozal D. (2001) Respiratory plasticity following intermittent hypoxia: developmental interactions. J. Appl. Physiol. 90, 1995–1999.

    PubMed  CAS  Google Scholar 

  358. Moss I. R. (2000) Respiratory responses to single and episodic hypoxia during development: mechanisms of adaptation. Respir. Physiol. 121, 185–197.

    Article  PubMed  CAS  Google Scholar 

  359. Gaultier C. (2001) Abnormalities of the chemical control of breathing: Clinical correlates in infants and children. Pediatr. Pulmonol. 23, 114–117.

    PubMed  Google Scholar 

  360. Kinney H. C., Filiano J. J., and White W. F. (2001) Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J. Neuropathol. Exp. Neurol. 60, 228–247.

    PubMed  CAS  Google Scholar 

  361. Ling L., Fuller D. D., Bach K. B., Kinkead R., Olson E. B. Jr, and Mitchell G. S. (2001) Chronic intermittent hypoxia elicits serotonindependent plasticity in the central neural control of breathing. J. Neurosci. 21, 5381–5388.

    PubMed  CAS  Google Scholar 

  362. Youssef F. F., Addae J. I., McRae A., and Stone T. W. (2001) Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia. Brain Res. 907, 144–150.

    Article  PubMed  CAS  Google Scholar 

  363. Levin S. and Godukhin O. (2005) Developmental changes in hyperexcitability of CA1 pyramidal neurons induced by repeated brief episodes of hypoxia in the rat hippocampal slices. Neurosci. Lett. 377, 20–24.

    Article  PubMed  CAS  Google Scholar 

  364. Payne R. S., Goldbart A., Gozal D., and Schurr A. (2004) Effect of intermittent hypoxia on long-term potentiation in rat hippocampal slices. Brain Res. 1029, 195–199.

    Article  PubMed  CAS  Google Scholar 

  365. Golder F. J. and Mitchell G. S. (2005) Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J. Neurosci. 25, 2925–2932.

    Article  PubMed  CAS  Google Scholar 

  366. Beguin P. C., Joyeux-Faure M., Godin-Ribuot D., Levy P., and Ribuot C. (2005) Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J. Appl. Physiol., 99, 1064–1069.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, F., Ramirez, JM. Hypoxia-induced changes in neuronal network properties. Mol Neurobiol 32, 251–283 (2005). https://doi.org/10.1385/MN:32:3:251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:3:251

Index Entries

Navigation