DOI QR코드

DOI QR Code

Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete

잔골재 특성이 굳지 않은 지오폴리머 콘크리트에 미치는 영향

  • Cho, Young-Hoon (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • An, Eung-Mo (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Su-Jeong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Dong-Jin (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 조영훈 (한국지질자원연구원 광물자원연구본부) ;
  • 안응모 (한국지질자원연구원 광물자원연구본부) ;
  • 이수정 (한국지질자원연구원 광물자원연구본부) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부) ;
  • 김동진 (한국지질자원연구원 광물자원연구본부)
  • Received : 2016.04.22
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

It is possible that aggregates add on to geopolymer based fly ash to mix mortar and concrete like cement. This is necessary to evaluate mineral composition, particle shape, surface, size distribution, density and absorption ratio for fine aggregates due to few detailed research to examine influence of fine aggregates properties on unhardened geopolymer concrete. In this research, used two different fine aggregates, Jumunjin sand(having quartz, mica, feldspar, pyroxene in mineral composition, more than 96% of total size between -0.60 and +0.30mm, angular shape and rough surface) and ISO sand(having almost all quartz in mineral composition, more than 51% size between -1.40 and +0.60mm, simultaneously varied size distribution, spherical shape and smooth surface). After an experimental result of the varied ratio of Si/Al=1.0-4.1 geopolymer paste, mix proportion respectively applied Si/Al=1.5 having the highest compressive strength to mortar and Si/Al=3.5 having the highest consistency to concrete. Geopolymer mortar by mixing with Jumunjin and ISO sand in varied range of 20-50wt.% showed flow size increase between 69.5 and 112.0mm, between 70.5 and 126.0mm respectively. Geopolymer concrete at an addition of 77wt.% of total aggregates ratio showed that average compressive strength was 32MPa and the consistency was favorable to molding. Since ISO sand observing varied size distribution, spherical shape, smooth surface, low absorption ratio resulted in advantageous properties on consistency of geopolymer, geopolymer concrete can be suitable for using the fine aggregates similar to ISO sand.

석탄재로부터 제조된 지오폴리머에 골재를 첨가하여 시멘트와 동일하게 모르타르와 콘크리트를 제조하는 것이 가능하다. 잔골재의 특성이 지오폴리머 모르타르와 콘크리트에 미치는 영향에 대해 체계적으로 검토한 연구는 많지 않기 때문에 잔골재의 광물조성, 형상, 표면, 입도, 밀도 및 흡수율 등을 평가하는 것이 필요하다. 본 연구에서는 석영, 운모, 장석, 휘석 등의 광물 조성을 이루고 -0.60mm에서 +0.30mm까지의 입자크기가 전체의 96%이며 표면이 거칠고 각진 형상을 보이는 주문진 표준사와 대부분 석영으로 -1.40mm에서 +0.60mm까지의 입자크기가 전체의 51%를 보이고 동시에 다양한 입자크기를 보이면서 표면이 매끈하고 둥근 형상을 나타내는 ISO 표준사 다른 두 종류의 잔골재를 사용하였다. 배합비는 Si/Al=1.0-4.1의 범위에서 지오폴리머 페이스트를 실험한 결과 가장 높은 압축강도를 보인 Si/Al=1.5는 모르타르, 가장 높은 반죽 질기를 보인 Si/Al=3.5는 콘크리트에 각각 적용하였다. 지오폴리머 모르타르는 잔골재를 20-50%의 범위에서 주문진 표준사와 ISO 표준사가 첨가된 모르타르는 각각 69.5-112.0mm, 70.5-126.0mm의 플로우 크기 증가를 보였고, ISO 잔골재 가 첨가된 모르타르의 플로우 증가율이 더 높았다. 지오폴리머 콘크리트는 ISO 표준사와 굵은 골재가 전체의 77wt.%를 첨가하였을 때 평균 압축강도가 32MPa로 나타났고 반죽 질기는 몰딩하기에 양호하였다. 본 연구에서 다양한 입도분포, 둥근 형상, 매끈한 표면, 낮은 흡수율을 보인 ISO 표준사가 지오폴리머의 반죽 질기에 유리한 특성을 보였기 때문에 지오폴리머 콘크리트에도 ISO 표준사와 유사한 잔골재를 사용하는 것이 유리할 수 있다.

Keywords

References

  1. Breton, D., Carles-Gibergues, A., Ballivy, G., Grandet, J. (1993). Contributions to the formation mechanism of the transition zone between rock cement paste, Cement Concrete Research, 23, 335-346. https://doi.org/10.1016/0008-8846(93)90099-U
  2. Chindaprasirt, P., Pre De Silva, Hanjitsuwan. (2014). Effect of high-speed mixing on properties of high calcium fly ash geopolymer paste, Arab Journal Science Engineering, 39(8), 6001-6007. https://doi.org/10.1007/s13369-014-1217-1
  3. Davidovits, J. (1994). Geopolymers: inorganic polymeric new materials, Journal Material Engineering, 16, 91-139.
  4. De Rooij, M.R. (2000). Syneresis in Cement Paste Systems, Ph.D Thesis, Delft University Press, The Netherlands.
  5. Duxson, P., Provis, J.L., Lukey, G.C., Van Deventer, J.S.J. (2007). The role of inorganic polymertechnology in development of green concrete, Cement and Conrete Research, 37, 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  6. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., Van Deventer, J.S.J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269, 47-58.
  7. Giaccio, G., Zerbino, R. (1998). Failure mechanism of concretecombined effects of coarse aggregates and strength level, Advanced Cement Based Materials, 7, 41-48. https://doi.org/10.1016/S1065-7355(97)00014-X
  8. Guo, X., Shi, H., A. Dick, W. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cement and Concrete Composites, 32, 142-147. https://doi.org/10.1016/j.cemconcomp.2009.11.003
  9. Hardjito, D., Wallah, S.E., Rangan, B.V. (2002). Research into engineering properties of geopolymer concrete, International Conference' Geopolymer 2002 - Turn Potential to Profit, Melbourne, Australia.
  10. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., Rangan, B.V. (2003). Properties of geopolymer concrete with fly ash as its source material, Concrete in The Third Millenium, The 21st Biennial Conference of The Concrete Institute of Australia.
  11. Hardjito, H., Rangan, R.V. (2005). Development and properties of low-calcium fly ash based geopolymer concrete, Research report GC1. Perth, Australia: Faculty of Engineering, Curtin University of Technology.
  12. Heyes, G.W., Kelsall, D.F., Stewart, P.S.B. (1973). Continuous grinding in a small wet rod mill Part I. Comparison with a small ball mill, Powder Technology, 7, 319-325. https://doi.org/10.1016/0032-5910(73)80043-9
  13. Joseph, B., Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete, Scientia Iranica A, 19(5), 1188-1194. https://doi.org/10.1016/j.scient.2012.07.006
  14. Kim, J.J., Moon, J.H., Youm, K.S., Lee, H.E., Lim, N.H. (2014). Analysis of microstructures in cement matrix of nanosilica blended concrete, The Korean Society for Railway, 1578-1581 [in Korean].
  15. Koh, K.T., Ryu, G.S., Yoon, G.W., Han, C.G., Lee, J.H. (2006). Influence of the type of fine aggregate on concrete properties, Journal of the Korea Concrete Institute, 18(4), 459-467 [in Korean]. https://doi.org/10.4334/JKCI.2006.18.4.459
  16. Lee, S., Jou, H.T., Chon, C.M., Kang, N.H., Cho, S.B. (2013). Developing and assessing geopolymers from Seochun pond ash with a range of compositional ratios, Journal of the Korea Ceramic Society, 50(2), 134-141 [in Korean]. https://doi.org/10.4191/kcers.2013.50.2.134
  17. Lee, S., Kang, N.H., Chon, C.M., Jou, H.T. (2014). Grinding effects of coal-fired pond ash on compressive strength of geopolymers, Journal of Korean Institute of Resources Recycling, 23(6), 3-11 [in Korean]. https://doi.org/10.7844/kirr.2014.23.6.3
  18. Lee, S., Seo, M.D., Kim, Y.J., Park, H.H., Kim, T.N., Hwang, Y., Cho, S.B. (2010). Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer, International Journal of Mineral, 97, 20-25. https://doi.org/10.1016/j.minpro.2010.07.007
  19. Lee, S.B., Lee, D.H., Jee, N.Y., Lee, L.H. (1997). Design of mix proportion for concrete with crushed sand by very fine sand and particle shape, Journal of the Architectural Institute of Korea, 13(5), 289-297 [in Korean].
  20. Lee, S.T., Choi, Y.C., Park, K.T., Seo, D.W., You, Y.J. (2014). Effect of steam curing on the properties of recycled aggregate concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(2), 99-107 [in Korean]. https://doi.org/10.11112/jksmi.2014.18.2.099
  21. Lee, W.K.W., Van Deventer, J.S.J. (2004). The interface between natural siliceous aggregates and geopolymers, Cement Concrete Research, 34(2), 195-206. https://doi.org/10.1016/S0008-8846(03)00250-3
  22. Lizcano, M., Gonzalez, A., Basu, S., Karen Lozano, Miladin Radovic. (2012). Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers, Journal of the American Ceramic Society, 95(7), 2169-2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x
  23. Mitsui, K., Li, A., Lange, D.A., Shah, S.P. (1994). Relationship between microstructure and mechanical properties of the paste-aggregate interface, ACI Materials Journal, 91(1), 30-39.
  24. Palomo, A., Grutzeck, M.W., Blanco, M.T. (1999). Alkali-activated fly ashes-a cement for the future, Cement Concrete Research, 29, 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  25. Pourghahramani, P., Forssberg, E. (2006). Microstructure characterization of mechanically activated hematite using XRD line broadening, International Journal of Mineral Process, 79(2), 106-119. https://doi.org/10.1016/j.minpro.2006.02.001
  26. Rahier, H., Denayer, J.F., Van Mele, B. (2003). Low-temperature synthesized aluminosilicate glasses, Journal of Materials Science, 38, 3131-3136. https://doi.org/10.1023/A:1024733431657
  27. Rangan, R.V. (2007). Low-calcium fly-ash based geopolymer concrete. In: Nawy, E.G. editor. Concrete Construction Engineering Handbook, New York: CRC Press.
  28. Sanjay, K., Rakesh., K. (2011). Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceramics International, 37(2), 533-541. https://doi.org/10.1016/j.ceramint.2010.09.038
  29. Scrivenger, K.L., Bentur, A., Pratt, P.L. (1988). Quantitative characterization of the transition zone in high strength concretes, Advances in Cement Research, 1(4), 230-237. https://doi.org/10.1680/adcr.1988.1.4.230
  30. Shi, C., Fernandez, A.J., Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to portland cement, Cement Concrete Research, 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
  31. Steven, H.K., Beatrix, K., William, C.P. (2003). Design and Control of Concrete Mixtures, 14th ed., Portland Cement Association.
  32. Suber. (2004). Influence of Aggregate on the Microstructure of Geopolymer, Ph.D Thesis, Department of Applied Physics, Curtin University of Technology.
  33. Teixerira-Pinto, A., Fernandez, P., Jalali, S. (2002). Geopolymer manufacture and application - Main problems when using concrete technology, Geopolymers 2002 International Conference, Melbourne, Australia: Siloxo Pty. Ltd.
  34. Temuujin, J., Van Riessen, A., Mackenzie, K.J.D. (2010). Preparation and characterisation of fly ash based geopolymer mortars, Construction and Building Materials, 24, 1906-1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012
  35. Temuujin, J., Williams, R.P., Van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, Journal of Materials Processing Technology, 209, 5276-5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016
  36. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. (1997). The potential use of geopolymeric materials to immobilize toxic metals: Part I. Theory and applications, Mineral Engineering, 10, 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0
  37. Weng, L., Sagoe-Crentsil, K., Brown, T., and Song, S. (2005). Effects of aluminates on the formation of geopolymers, Material Science and Engineering: B, 117(2), 163-68. https://doi.org/10.1016/j.mseb.2004.11.008
  38. Williams, R.P., Van Riessen, A. (2010). Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD, Fuel, 89, 3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031
  39. Wong, Y.L., Lam, L., Poon, C.S., Zhou, F.P. (1999). Properties of fly ash-modified cement mortar-aggregate interfaces, Cement and Concrete Research, 29, 1905-1913. https://doi.org/10.1016/S0008-8846(99)00189-1
  40. Xu, A., Sarkar, S.L., Nilsson, L.O. (1993). Effect of fly ash on the microstructure of cement mortar, Materials and Structures, 26, 414-424. https://doi.org/10.1007/BF02472942

Cited by

  1. Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers vol.25, pp.6, 2016, https://doi.org/10.7844/kirr.2016.25.6.73
  2. Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers vol.4, pp.4, 2016, https://doi.org/10.14190/JRCR.2016.4.4.363