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Abstract 

Driving fatigue is a common occupational hazard for any long distance or professional 

driver, and fatigue detecting has major implications for transportation safety. Monitoring 

physiological signal while driving can provide the possibility to detect the fatigue and 

give the necessary warning. In this paper, fifty subjects participated in driving 

simulations experiment with their recorded EEG signals to induce two kinds of fatigue 

states: Alert and drowsy. Two nonlinear methods, approximate Entropy (AE) and Sample 

Entropy (SE), were used to characterize irregularity and complexity of EEG data. 

Subsequently Support Vector Machine (SVM) was applied to classify these two fatigue 

states. The experimental result shows that two complexity parameters are significantly 

decreased as the fatigue level increases. The result indicates that both of two nonlinear 

indicators can be used to characterize driver fatigue level. Furthermore, the combined 

measure feature results in higher classification accuracy, indicating the proposed 

classification method is more robust and effective, compared with single complexity 

measure. 

 

Keywords: Driver fatigue; approximate entropy (AE); sample entropy (SE); 

Electroencephalogram (EEG) 

 

1. Introduction 

Fatigue is a common occupational hazard for any long distance or professional driver, 

and can affect driver’s ability to continue driving [1]. Fatigue is a complex state which 

manifests itself in the form of lack of alertness and reduced mental performance, often 

accompanied by drowsiness [2].  Driver fatigue frequently occurs and is believed to be 

responsible for 20–30% of road related accidents. Driving fatigue is widely recognized as 

a core safety issue in the transportation. When people become fatigued, they usually 

experience difficulties in maintaining task performance at an adequate level [3]. The 

detection and quantification of fatigue can help researchers to build instruments that will 

help in early assessment of fatigue level on-board. Therefore, many researchers proposed 

various methods to estimate the driver fatigue. One approach monitors driver or vehicle 

physical changes such as the inclination of the driver’s head, sagging posture, and 

open/close state of the eyes, decline in gripping force on steering wheel, vehicle lateral 
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position, vehicle speed and vehicle yaw rates [4-5] The other approaches focus on the 

fields to measure physiological changes such as eye-blinking, heart-rate, pulse-rate or skin 

electric-potential, particularly, brain waves, as a means of detecting a human fatigue state. 

Among a number of physiological indicators available to measure fatigue, the 

electroencephalographic (EEG) is widely considered to be the most significant and 

reliable indicator of fatigue [6-8].     

In recent years, EEG signals were widely used to detect fatigue [9-12]. Driving 

involves various functions such as movement, visual and auditory processing, decision 

making and recognition. EEG is generated by cell bodies and dendrites of neurons [2] and 

closely associated with mental and physical activities, which is influenced by 

psychological factors. Hence, all the physical and mental activities associated with driving 

are reflected in EEG signals.  

A number of methods for driving fatigue detection using EEG have been proposed, 

such as the assessing methods based on the frequency domain information detection of 

alpha spindles by Tietze [13], and an algorithm that utilizes the combination of all 

frequency components of EEG to signify level of alertness by Lal [5, 14].  

Up to the present, few studies used nonlinear measure to assess driver fatigue [15].  

Azarnoosh used Symbolic dynamics indictor to assess fatigue [16]. 

Here in order to study the sensitivity of nonlinear complexity measures to driver 

fatigue, two complexity parameters, Sample entropy (SE) [17-18] and approximate 

entropy (AE) [18-19], were used to quantify the complexity and irregularity of EEG data 

under a driver fatigue state, i.e., before and after performing a 2-hours driving task. 

Subsequently, Support Vector Machine (SVM) [21-22], a nonlinear classification tool, 

was used to identify the state of driver fatigue from the non-fatigue (alert) state.  

Up to now, to the best of our knowledge, there is no study in the literature related to the 

assessment of classification performance using AE or SE-based feature extraction and 

SVM classifier when applied specifically to the driving fatigue problem. Experimental 

results indicate that, compared with several previous studies, the proposed method could 

enhance the detection rate. Figure 1 shows the schematics of the proposed diagnosis 

expert system.  

 

 

Figure 1. The Proposed Classification Model For Classifying Driving Fatigue. 

 

 

2. Materials and Methods 
 

EEG signal acquisition 

 

Data preprocessing 

 

Feature extraction (SE and AE) 

Training classification model 

Testing using trained 

classification model  
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2.1. Subject  

Sixty graduate students (25 females, aged 19-23 years, mean: 21) were chosen from the 

university and recruited to perform monotonous driving simulator task. All subjects were 

in good health and have no disorders related to sleep. The participants were asked to 

refrain from any type of medicine and stimulus like alcohol or coffee during the 

experiment. None of them had taken any drugs and reported on any cardiovascular 

disease or neurological disorders in the past. This study had the institute’s Human 

Research Ethics Committee approval. The Participants provided their written informed 

consent according to a human research protocol in this study. They did not work night 

shifts and had normal sleep time.  

 

2.2. Data Acquisition 

All the subjects were seated on a chair, facing a video screen 1m from their eyes. EEG 

was recorded on the following silver electrodes: Fp2, Fp1, F4, F3, Fz, C4, C3, P4, P3, Cz, 

Pz, and Oz, based on the international 10-20 system. The vertical electrooculography 

(VEOG) signals and the horizontal EOG (HEOG) signals were also recorded. EEG and 

EOG signals were filtered through Neuroscan Synamps Amplifier with a band pass filter 

of 0.01-100Hz, and digitized at 500Hz. EOG was used to analyze eye blink patterns as 

part of the manual classification criteria for classifying EEG alertness and drowsiness. All 

electrodes were referenced to the right earlobe and the electrode impedances were less 

than 2 kW. Eye movement artifacts were removed from EEG signal by the adaptive filter 

based on least mean square algorithm. The artifacts removal criterion was ±75μv. Artifact 

rejection is done by visually inspecting the EEG.   

First, subjective sleepiness was assessed by means of the Stanford Sleepiness Scale and 

the Karolinska sleepiness scale, and subjective fatigue was measured with the help of the 

Samn-Perelli checklist, Li’s subjective fatigue scale and Borg’s CR-10 scale [23]. 

Subsequently, participants completed the first session. This is a 15min alert driving 

session, during which, participants were faced on a road involving many cars and stimuli. 

We set this recording as a baseline measure.  After the recording, the 15min EEG were 

divided into many 10s epoched EEG dataset by EEGLAB toolbox. We labeled them as 

alert EEG.  Hence, there were totally 50*15*60/10=4500 epoched alert datasets for 

further processing. 

 

2.3. Driving Simulation Task 

Following the alert driving session was the monotonous driving session, in which, each 

subject performed simulated driving test. The participant operated car and acted as drivers 

on a simulated driving platform. At the same time, a video clip showing moving road 

images of only straight highways mostly free of vehicles was displayed in the screen of 

the driving platform. Each subject was asked to watch the road at all times. The driving 

lasted 2-3h until we have observed obvious drowsy EEG for at least 15min. The last 

15min EEG signal was divided into many 10s epoched EEG dataset. We labeled them as 

drowsy EEG.  

 

2.4. Data Preprocessing 

Epoch was labeled as alert or drowsy classes by one independent psychophysiologist 

who has trained in interpreting the EEG. The identification criterion was based on two 

indexes [24]: (1) eye blink patterns and (2) dominant EEG frequency component. The 

alert state is dominated by beta component (13-25Hz), eye blinks of 0.3–0.4s durations 

[25] and inter-eye blink intervals of 6-8s [26]. The drowsy state will show frequent slow 

eye movement with dominant alpha rhythm (9-13Hz), duration time of eye closures 
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greater than 0.5s. The epochs with ambiguities were excluded from the analysis. Finally, 

we selected 4000 drowsy and 4000 alert datasets for further feature extraction. 

 

2.5. Feature Extraction 

Entropy is a concept handling predictability and randomness, with higher values of 

entropy always related to less system order and larger randomness [27]. In recent years, 

researchers proposed various estimators to quantify the entropy of time series. These 

estimators can be roughly divided into m bedding entropy and spectral entropy [28]. 

Embedding entropy  assess how EEG time series signals change with time by comparing 

each time series signal with a lagged form of itself [29].  

In this paper, Two m bedding entropy-based complexity parameters: AE and SE are 

used to quantify the complexity of EEG under two driver fatigue states. Compared with 

other non-linear dynamics parameters, AE is less sensitive to noise and can be applied for 

short-length time series data. For calculating the AE, the embedding dimension (m) and 

vector comparison threshold (r) must be specified. The value of AE is determined in the 

following steps: 

The value of AE is determined in the following steps: 

Given a time series {{ ( )} (1), (2),..., ( )x n x x x N  } with N  data points,  take m vectors 

X (1),...,X ( 1)m m N m   defined as mX ( ) [ ( ), ( 1),..., ( 1)]i x i x i x i m    , 1 1i N m    .  

Two input parameters m and r, must be fixed before calculating AE, in which  r denote 

the noise filter level and  is defined as: 

r=g*SD  for g=0.1,0.2,...,0.9                                                        (1) 

Where SD represents the standard deviation of the data sequence X  

Define the distance between X(i) and X(j), d[X(i),X(j)] as follows: 

0,..., 1
[X ( ),X ( )] max ( ( ) x( ) )m m

k m
d i j x i k j k

 
                                         (2) 

For a given X ( )m i , count the number of j (1<j<N –m+1), so that  [X ( ),X ( )]m md i j r  , 

denoted ( )mN i  . 

Then, for  1 1i N m    , calculate: 

r ( ) ( ) / ( 1)m mC i N i N m                                                                    (3) 

 Define  m ( )r   as 

1
m

r

1

1
( ) ln ( )

1

N m
m

i

r C i
N m

 



 
 

                                                       (4) 

Finally, calculate AE 

m m+1( ) ( ) ( )APEN m,r,N r r                                                     (5) 

The AE algorithm counts each sequence as matching itself to avoid the occurrence of 

ln(0) in the calculations. To reduce this bias, Richman and Moorman have developed and 

characterized a new family of statistics: SE. SE is the negative logarithm of the 

conditional probability that two sequences similar form  points remain similar at the next 

point, where self-matches are not included in calculating the probability. Thus, a lower 

value of SE also indicates more self-similarity in the time series [29].  

The value of SE is determined in the following steps: 

Given a time series {{ ( )} (1), (2),..., ( )x n x x x N  } with N  data points, take m vectors 

X (1),...,X ( 1)m m N m   defined as  mX ( ) [ ( ), ( 1),..., ( 1)]i x i x i x i m     for 1 1i N m    . 
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Similar to AE algorithm, two parameters m and r were also fixed before calculation, in 

which  r denote the noise filter level and  is defined as: 

r=g*SD for g=0.1,0.2,...,0.9                                                     (6) 

Subsequently, define the distance between X(i) and X(j), d[X(i),X(j)] as follows: 

0,..., 1
[X ( ),X ( )] max ( ( ) x( ) )m m

k m
d i j x i k j k

 
                                              (7) 

For a given X ( )m i , count the number of j (1<j<N –m, j i  ), so that  

[X ( ),X ( )]m md i j r , denoted as  
iB  

. 

Then, calculate: 

1
( )

1

m

i iB r B
N m


 

                                                                            (8) 

 Define ( )mB r   as 

1

1
( ) ( )

N m
m m

i

i

B r B r
N m








                                                                   (9) 

Similar to the calculation of AE algorithm increment the dimension to m = m + 1 and 

compute +1( )mB r , Finally, calculate SE as 

+1( )
)= ln

( )

m

m

B r
SE m,r

B r
（                                                   (10) 

SE is first analyzed as feature extraction methods for evaluating the regularity of the 

epileptic EEG signals [30].  

By above feature extraction, 4000 drowsy and 4000 alert 2-dimensional feature vectors 

were fed into the classifier to train and test. 

 

2.6. Classification 

In this study, SVM was used for the purpose of automatic classification between 

alert and drowsy EEG epochs after above feature extraction. The goal of SVM is to 

find an optimal hyperplane that maximizes the separating margin between  
1  and 

2 . It is solved by the following minimization procedure with a constraint condition:  

2

1

1
min( )

2

k

j

i

C W


           i = 1, 2, … , k                                          (11) 

where   1il     is the class label of the ith sample with k being the number of SV.   

ig denotes the feature vector of the ith sample;  W and b denotes the orientation and 

offset of the hyperplane, respectively. 
2

W   is used to calculate the squared 

Euclidean norm, ( )   denotes the dot product. 
i   is called slack parameter. C is a 

penalty factor and can be determined by the cross validation procedure. Above 

optimization problem can be solved by introducing the other optimization for 

Lagrangian multipliers i . A sample ig  is a Support Vectors (SV) when it 

corresponds to a nonzero i . Let s

ig  denote a SV, and then the class label of any test 

sample g can be given as followings: 

1

( ) sgn( ( , ) )
sk

s

i i i

i

l g l K g g b


                                       (12) 
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where 
sK  is the number of SV. “ sgn ” denotes a flag function which transforms a 

negative input value to -1 and positive value to 1. Notation K denotes a kernel function 

which is used to project the samples to a new feature space with a higher dimension 

where the samples can be linearly separated. In this study, related parameter values in the 

kernel function were also determined by cross validation procedure.  

In this study, SVM toolbox using Matlab was applied.  The SVM performance was 

assessed on both the training and the testing sets. 10 fold cross validation was used. 

 

3. Result 

AE and SE (m = 1, r = 0.2 times the standard deviation of the data) were estimated for 

all the channels. Table 1 shows the averaged AE and SE across on all the epochs. The AE 

and SE values (mean ± SD) for the alert and drowsy states and the p values of the t-tests 

performed to examine the differences between the two states. Related results are 

summarized in Table 1. It can be seen there is no significant differences both for AE and 

SE measures at most of channels except Pz, P3, Pz and Oz, although most entropy values 

for drowsy are smaller than those for alert state.   

Furthermore, above 4 electrodes were selected and classification performance (testing 

accuracy) for combined entropy measures was evaluated. Table 2 summarizes 

classification accuracy of the EEGs for the drowsy (sensitivity) and alert (specificity) 

states only for above 4 electrodes. The highest sensitivity was obtained at electrode P3 

(93.67%), although with a small specificity (88.89%). The highest specificity was reached 

at electrode P4 (91.11%). Finally, the averaged accuracy is highest at P3 electrode in 

which significant differences between two states is 0.022 for AE and 0.026 for SE.    

For one thing, we found most AE and SE values of drowsy state are smaller than those 

of alert. It is noted that one cannot obtain high classification accuracy using single 

complexity measure, which can be seen for p values in Table 1. However, when using 

combined complexity measure and machine learning method, classification accuracy 

reach a satisfactory level after our training and testing. Finally, high classification 

accuracy indicates SVM is suitable for classifying two different fatigue states. 

Table 1. AE And SE Values With Corresponding Significant Difference Level 
(P Value) Between Alert And Drowsy States 

 

 

Chann

els 

AE  for alert 

(mean ± SD) 

AE for 

drowsy 

(mean ± SD) 

Statistical 

analysis 

(p value 

for AE) 

SE for alert 

(mean ± SD) 

SE for 

drowsy 

(mean ± SD) 

Statistica

l analysis 

(p value 

for SE) 

 FP2 0.651   0.133 0.565  0.147 0.234 0.671   0.243 0.668  0.173 0.132 

Fp1 0.562   0.166 0.549  0.173 0.461 0.621   0.134 0.632  0.177 0.509 

F3 0.587   0.211 0.623  0.081 0.286 0.771   0.117 0.700  0.165 0.343 

F4 0.724   0.211 0.713  0.135 0.212 0.730   0.153 0.711  0.281 0.423 

Fz 0.735   0.133 0.721  0.209 0.432 0.765   0.161 0.750  0.202 0.521 

C4 0.661   0.134 0.637  0.180 0.342 0.687   0.154 0.655  0.214 0.585 

C3 0.637   0.156 0.635  0.146 0.332 0.588   0.245 0.538  0.163 0.476 

Cz 0.600   0.133 0.585  0.136 0.297 0.660   0.270 0.685  0.157 0.465 

P4
* 

0.674   0.154 0.554  0.188 0.035 0.612   0.158 0.593  0.128 0.030 

P

3
*
 

0.715   

0.148 

0.665  0.

133 
0.021 0.689   

0.161 

0.584  0.

134 
0.026 

P

z
*
 

0.682   

0.135 

0.554  0.

161 
0.043 0.583   

0.145 

0.509  0.

216 
0.034 

O

z
*
 

0.680   

0.165 

0.582  0.

163 
0.033 0.675   

0.112 

0.576  0.

173 
0.033 

* denotes p value is less than 0.05 
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Table 2. Classification Accuracy of the Eegs for the Drowsy (Sensitivity) 
and Alert (Specificity) for Four Channels Using Proposed Method 

Channel

s 

Sensitivity (%) 

(mean ± SD) 

Specificity (%) 

(mean ± SD) 

 Averaged accuracy 

P4 0.8855   0.1289 0.9111  0.1432 0. 8983 

P3 0.9367   0.1435 0.8889   0.1700 0. 9128 

Pz 0.9340   0.1551 0.8788   0.1562 0. 9064 

Oz 0.8775   0.2553 0.9012   0.1536 0. 8893 

 

4. Discussion 

Fatigue is a prevalent and potentially dangerous transport related condition. In this 

study, two widely used complexity measure, AE and SE, were used to quantify the 

complexity of EEG between before and after driving fatigue. This study also aims to use 

SVM to establish an automatic method of distinguishing between alert and drowsy states, 

hence developing a reliable detection system of drowsiness for driving safety.   

As nonlinear complexity measures, AE and SE could effectively reveal the regularity 

and randomness in a time varying EEG and obtain the information regarding the 

dynamics of the specific regional brain subsystem. We found significant difference 

mainly at parietal and occipital regions, which suggests EEG from the above two regions 

is sensitive for change of level of fatigue.  

Long time of cognitive work would induce the increase of driver fatigue. Compared 

with single measure, the combination of the complexity parameters AE and SE of EEG 

can effectively characterize the fatigue degree during driver fatigue.    

In this study, combining index of AE and SE shows a significant change after long time 

driving task. The results indicate that the subjects’ alertness level declines greatly, and the 

excitement level of brain decreases after the completion of the task. Although non-linear 

EEG analysis has not yet been applied as a diagnostic tool, our study is very important 

from a theoretical point of view. It shows the possibility to analyze the dynamical 

behavior of the brain and to find differences between alert and fatigue states using the 

proposed non-linear measures. We believe they might be a powerful tool to reveal hidden 

characteristics of bio-signals which cannot be detected using linear analysis, as 

physiological systems are basically non-linear in nature. Also the proposed method will 

give us a deeper understanding of the brain function in ways which are not possible by the 

other conventional statistical or linear methods.  

For driver fatigue classification, experimental results indicate that SVM method might 

be a useful classifier in the estimation of driver fatigue. Our experimental results also 

demonstrate that a high-dimensionality non-linear pattern classification method, SVM, is 

able to detect the complex patterns of brain activities relevant to the driving fatigue. We 

believe, this proposed method can be applied on board to quantify the level of fatigue in 

human drivers or human operators in safety critical human-machine interactions. It is 

noted that for SVM classifier, two classification parameters was simply assigned in this 

study by our experience. Obviously, more suitable tools for selecting the classifier 

parameter values such as LIBSVM package should be used to further enhance the 

performance of our method. 

For this study, the high classification accuracy may possibly be achieved if less EEG 

channels were used. We used a full 14-channel EEG recording in this study. However, if 

viewed from an economic or ergonomic aspect with respect to product development, more 

EEG recording channels may not be feasible. Hence, Key EEG channel selection could be 

worthy of future investigations so that the optimal number of EEG channels can be 

determined.  
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In this study, the sample population of subjects has been restricted to young healthy 

subject in the university in an attempt to minimize the effect of individual differences. 

Since the study showed encouraging results for the automatic detection of drowsiness 

during driving, future studies should include a wide range of subjects to detect a possible 

effect of other variables such as age and driving experience. 

Finally, using other classification method such as extreme learning machine to identify 

EEG with fatigue would be attempted in our future study. We believe it would enhance 

classification performance further.  
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