
International Journal of Grid Distribution Computing

Vol.8, No.1 (2015), pp.247-258

http://dx.doi.org/10.14257/ijgdc.2015.8.1.23

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2015 SERSC

A Workload-aware Resources Scheduling Method for Virtual

Machine

Hongshan Qu, Xiaodong Liu, Huating Xu

School of Computer, Henan Institute of Engineering, Zhengzhou, 451191, China

E-mail: qhs@haue.edu.cn,liuxiaodongxht@qq.com,2279883989@qq.com,

Abstract

Virtualization-based cloud computing platforms allow multiple virtual machines (VMs)

running on the same physical machine. Efficient allocation of limited underlying

resources has been a key issue. In order to improve the CPU resources utilization, this

paper presents a workload-aware CPU resources scheduling method (WARS). WARS uses

the allocated credits and consumed credits to diagnose the CPU resources requirements

of VMs and dynamically adjusts CPU resources according to the requirements of VMs.

The adjustment of CPU resources is converted into increased or decreased weights of

VMs. The implementation of WARS is confined to the VMM layer, without VM

dependency. Our evaluation shows that WARS can improve the overall utilization of CPU

resources.

Keywords: Virtualization; Virtual Machine; Resource allocation.

1. Introduction

Virtualization-based cloud computing environment allows multiple virtual machines

(VMs) running on the same physical machine. These VMs may run different types of

applications, such as processor-intensive, I/O-intensive and latency-intensive. These

different applications have different resources requirements. However, the current

virtualization technology uses static resources allocation mechanism. The underlying

physical resources, such as CPU, cannot be fully utilized. Firstly, the workloads of the

VM are usually varying. In order to satisfy the resources requirements of the VM, the

resources of the VM must be allocated according to its peak requirement. The resources

of the VM will be wasted except in peak condition. Secondly, the workloads of some

virtual machine are light but they occupy physical machine resources. The idle resources

cannot be used by the VMs whose workloads are heavy. Thirdly, some applications have

been completed but the user may not destroy the virtual machine, so that the resources of

the VM will be wasted.

For improving the CPU resources utilization, some dynamic CPU resources allocation

methods have been proposed [1-3]. These methods use the average CPU utilization rate [1,

2] or the time intervals between two consecutive virtual clock cycles [3] to diagnose

resources requirements of VMs. The virtual machine monitor (VMM) allocates CPU

resources according to the resources requirements of VMs. In order to improve the

predictive ability, the authors of [4, 5] use fuzzy modeling to learn and to predict the CPU

resources requirements of the VM. However, CPU resources metrics such as CPU

utilization, response time and throughput are not particularly useful in predicting

workload.

This paper presents a workload-aware CPU resources scheduling method (WARS).

The WARS uses the allocated credits and consumed credits to diagnose the CPU

resources requirements of VMs. If the VM has not consumed its allocated credits in a

schedule period, it means the VM needs less CPU resources. Or else, if the VM has

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

248 Copyright ⓒ 2015 SERSC

consumed all its credits before the schedule period, it means the VM needs more CPU

resources. The ratio of the consumed credits and consumed allocated credits can diagnose

the actual CPU resources requirements more accurately. Based on the CPU resources

requirements of VMs, the WARS will adjust CPU resources of VMs in the next schedule

period. The CPU resources adjustment of WARS is converted into increased or decreased

weight of VMs.

The proposed scheme has been implemented in the xen VMM. The distinguished

features of WARS compared to prior work are as follows: First, WARS uses the ratio of

the consumed credits and consumed allocated credits to diagnose the CPU resources

requirements. Our credits based CPU resources diagnose scheme is more useful in

predicting workload. Second, our implementation is confined to the VMM layer, without

VM dependency. Previous resources diagnose scheme is implemented by VM itself [1-3,

6] and they are VM dependency.

The remainder of this paper is organized as follows: Section 2 describes the

background. Section 3 describes the scheduling model. Section 4 shows the experimental

results of the WARS. Section 5 introduces the related work. Finally, Section 6

summarizes our conclusions and suggests future works.

2. Background

Xen [7] is an open-source VMM that allows multiple operating systems to share

the same machine safely. It provides performance isolation among VMs and

manages access to underlying physical resources.

Fig.1 describes the xen architecture. Xen hypervisor provides an abstraction layer

between virtual machines and hardware resources. This layer performs functions

such as scheduling CPU and allocating memory among virtual machines. There is a

privileged domain (Dom0) in the xen VMM which is used to manage guest domains

(DomUs). The Dom0 can access to hardware resources directly and DomUs are not

allowed to access to hardware resources directly. DomUs can access hardware

resources through Dom0.

Xen Hypervisor

Privileged Domain

(Dom0)

Guest Domain(DomU) Guest Domain(DomU)

Virtual

CPU

Virtual

Memory

Virtual

Network

Backend
driver

Frontend
driver

Frontend
driver

Hardware resources(CPU,Memory,Network,etc)

Figure 1. Xen Architecture

The credit scheduler is Xen’s default scheduler at present. Its overall objective is

to allocate the processor resources fairly [8]. Every physical CPU has a run queue of

virtual CPUs (VCPUs). The queue is sorted by the priority of the VCPUs and the

head of the queue is always selected to run. As a VCPU runs, it consumes credits. A

VCPU’s priority can be one of the three values: OVER, UNDER and BOOST. If

VCPUs are in the OVER state, then they have used up its fair share of CPU

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 249

resources. If VCPUs are in the UNDER state, then they have CPU resources that can

be consumed. The BOOST state provides a mechanism for domains to achieve low

I/O response latency. All VCPUs in BOOST state are placed in front of those in

UNDER state in the run queue, while those in OVER state are kept in the tail of the

queue. The domain is assigned a weight value when it is created. Each domain is

allocated a certain number of credits according to its weight every 30 milliseconds.

The credit will be allocated to VCPUs of the domain fairly. Then the priority of

each VCPU will be recalculated.

The advantage of the credit scheduler is to guarantee each domain shares the

underlying CPU resources fairly. However, credit scheduler is a static allocation

method. The CPU resources cannot be fully utilized when the load of the domain is

varying and the load of domains is different.

3. The WARS Scheduling Model

In this section, we describe the WARS scheduling model and the evaluation model.

3.1. WARS Architecture

With WARS, the underlying physical CPU resources can be allocated

dynamically according to the demand of VMs. This can make full use of idle CPU

resources and increase the overall CPU resources utilization. Fig.2 shows the

WARS architecture. In the xen hypervisor, we add a monitor module which can

monitor the CPU resources consumption of every VMs and VCPUs and add

resources allocate module which allocates underlying CPU resources according to

the monitor. WARS monitors consumption of CPU resources of every VCPUs and

VMs at every time interval. If the consumed CPU resources of VCPUs or VMs are

different, the WARS will adjust the CPU resources of VCPUs and VMs according to

their requirements.

Hardware resource

Monitor

Resource allocate

Xen hypervisor

Vritual

machine1

Vritual

machine1

Vritual

machine1
……

Figure 2. WARS Architecture

3.2. Resources Requirement Diagnose Model

We assume there are N VMs running on the same physical machine. iVM is the i-

th VM and ijVC is the j-th VCPU of the iVM . Let iw be the weight of the iVM and

iv be the number of VCPUs of the iVM . The total weight can be calculated as

follows:

1

N

total i i

i

W w v


 

(1)

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

250 Copyright ⓒ 2015 SERSC

In order to diagnose the actual resource requirements of a VM, the WARS gathers the

consumed credits and allocated credits of every VCPUs and VMs every time interval. The

CPU utilization rate of ijVC in the i-th

time interval it can be calculated as follows:

 ()
()

()

con

ij i

ij i alc

ij i

C t
U t

C t


(2)

where ()con

ij iC t represents the consumed credits of ijVC at time interval it
and ()alc

ij iC t

represents the allocated credits of ijVC at time interval it . We also define the CPU

utilization rate of the iVM using the following formula 3.

 1

1

()

()

()

i

i

v
con

ij i

j

i i v
alc

ij i

j

C t

U t

C t











(3)

If the consumed credits of the iVM are less than its allocated credits, the CPU

resources of the iVM are abundant. Or else, the CPU resources of the iVM are shortage.

Therefore, the ()i iU t can be used to diagnose the CPU resources requirement of the iVM .

In our WARS, the CPU resources adjustment among VMs is converted into increased

or decreased weights of VMs. The CPU resources adjustment is based on the value of

the ()i iU t . If the ()i iU t is less than a threshold minU , in the next schedule period, the

VMM will get redundant weight of VMs back so that the weight can be assigned to VMs

which request more weight. The VMM don not get all redundant resources of VMs. The

VMM must guarantee VMs can work when their resources are got back, so we define the

status normalU which is the CPU utilization that can guarantee VMs to work. The

redundant weight of the
iVM is the corresponding weight of ratio (()normal i iU U t) to ()i iU t .

The redundant weight of the iVM that can be calculated as follows:

 1

() (())
()

()

i i i normal i i
i i

i i

w t v U U t
w t

U t


  
 (4)

On the contrary, if the ()i iU t is more than a threshold maxU , in the next scheduling

period, the iVM will request more weight to VMM. The request weight strategy is to

reduce the CPU utilization ()i iU t to normalU . The requested weight of the iVM is the

corresponding weight of ratio (()i iU t - normalU) to ()i iU t . The requested weight can be

calculated as follows.

1

() (())
()

()

i i i i i normal
i i

i i

w t v U t U
w t

U t


  
 (5)

3.3. Resource Scheduling Model

The WARS diagnoses the CPU resources requirements of VMs according to the CPU

utilization defined by formula (2-3) at every time interval. Based on the CPU resources

requirements of VMs, WARS will adjust the CPU resources of VMs. The adjustment of

VMs’ CPU resources is converted into increased or decreased weights of VMs.

Next, we explain WARS in more details.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 251

CPU resources diagnoses. In a virtualization environment, the VM may be created or

destroyed at any time. When a new VM is created, there may be multiple VMs running

and the VM is not monitored immediately. Only when a scheduling period is finished, the

VM begins to be monitored. WARS will record the allocated credits,the consumed credits

and the running time in one scheduling period. The CPU resources requirement can be

predicted through the CPU utilization defined by formula (2-3).

Request more or less CPU resources to VMM. If the CPU utilization of iVM is more

than a threshold maxU , it will apply to borrow more weights in the next scheduling period.

The borrowed weight which is requested by iVM is (6)

)(

))((
)(1

ii

Normaliiii
i

b

i
tU

UtUvw
tw




 (6)

The total weight
b

total which needs to borrow in the next scheduling period is (7)

 


 
n

i

i

b

ii

b

total tt
1

11)()( (7)

If the CPU utilization of iVM is less than a threshold minU , it will apply to lend some

weight in the next scheduling period. The lent weight can be calculated as follows.

)(

))(()(
)(1

ii

iiNormaliii
i

l

i
tU

tUUvtw
tw




 (8)

The total weights which can lend in the next scheduling period are (9)

 


 
n

j

i

l

ji

l

total tt
1

11)()( (9)

Weight adjustment. The adjustment of WARS is divided into three conditions

according to)(1i

b

total t and)(1i

l

i tw .

If)(1i

l

i tw >0 and)(1i

b

total t >)(1i

l

i tw , the weights which VM apply to borrow cannot

be satisfied completely. WARS allocates idle weights according to the needed weight of

VMs. The actual borrowed weight of iVM

can be calculated as follows:

)(

)()(
)(

1

1
1









i

b

total

i

b

ii

l

total
i

ab

i
tw

twtw
t

(10)

If)(1i

l

i tw >0 and)(1i

b

total t <=)(1i

l

i tw , the VMs which apply to borrow weight can

be satisfied and the VMs which apply to lend only need to lend a part. The actual lent

weight of iVM

can be calculated as follows:

)(

)())()((
)()(

1

111

11










i

l

total

i

l

ji

b

totali

l

i

i

l

ii

al

i
tw

twttw
twt




(11)

If)(1i

l

i tw <=0 and)(1i

b

total t >0, there are VMs which apply to more weights but

there is no idle CPU resources can be lent. WARS will reallocate CPU resources. The

allocation algorithm should have the following properties: 1) the interest of every VM

must be guaranteed; 2) the schedule should do its best to help those VMs which CPU

resources are short of.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

252 Copyright ⓒ 2015 SERSC

In order to reallocate resources satisfied the above two properties, we borrow the idea

of stock shares [9, 10]. VMs which have more shares will be allocated more resources.

The shares can be weight of VMs or fees paid by users. In this paper, we use the number

of VCPUs to define shares of VMs. The total shares can be calculated as follows.

1

N

total i

i

V v


 (12)

The weight of iVM which should be assigned in the next scheduling can be calculated

using following formula (13-14).

 1
1

1

()
() ()

()

b

i i i
i i total b

total total i

v w t
w t W

V w t
  





   (13)

 1  (14)

Where  and  reflect the importance of shares and resources utilization rate. The

weight is assigned according to the shares of CPU resources when 1 . The weight is

assigned according to the utilization of VMs.

3.4 The Evaluating Model

We assume the number of physical CPU is cpuN and the credits of the physical CPU

can allocate at every time interval t is defaultC , in the m time intervals t, the total CPU

resource is (15)

 tmCNC defaultcputotal  (15)

When the VCPU is running, it will consume the credit. If the running time of the ijVC

is ijt in the time interval t, the consumed credit is (16)

10)( ijij

ij

con ttC (16)

The total consumed credits in the time interval t can be calculated as follows:


 


n

i

v

j

ij

ij

concon

i

tCtC
1 1

)()((17)

The overall CPU utilization rate is (18)

)(

)(
)(

tC

tC
tU

total

con (18)

4. Performance Evaluation

4.1. Experiment Setup

We have implemented WARS mechanism in xen 4.1.2 hypervisor. Our system is

installed on the physical machine equipped with two Inter(R) Xeon(R) 4-core CPU

running at 2.40GHz, 32G of RAM. The application running in the VMs is matrix

multiply implemented by BSPCloud [11-13]. This section presents evaluation

results for different types of application and various workloads.

The scheduling period has an important influence on the scheduling algorithm

performance. If the scheduling period is too long, the accuracy of the prediction will

decline. If the scheduling period is too short, the scheduling overhead will increase. On

the other hand, in order to reduce the number of timer and reduce unnecessary system

overheads, the scheduling period t of WARS should be the integer time of VM scheduling

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 253

period t , i.e. tmt  . Based on our previous research, this paper selects t9 for

the scheduling period of WARS.

4.2. Performance Evaluation

In this set of experiments, we estimate the performance of WARS. To measure the

effectiveness of WARS, we compare the schedule of WARS (WARS _xen) with the xen

scheduling (Orig_Xen).

Table 1. Application Types by Different VMs

VM VCPUs Application type size used threads

VM1 4 Matrix multiplication 1248×1248 1

VM2 4 Matrix multiplication 1554×1554 2

VM3 4 Matrix multiplication 2100×2100 4

VM4 4 I/O operation ping 1

In the first set of experiments, we run four VMs concurrently and the application

running in the VM is shown in Table 1. The VM3 is CPU resources shortage. The CPU

resources of the VM1 and VM4 are abundant. When they are running on the same

physical machine, the WARS scheduling will reclaim excess resources of VM1 and VM4,

and the reclaimed resources will lend to VM3. Because the WARS scheduling only

reclaim the excess resources of VMs, the performance of the application which running

on the VM1 and VM4 will not influenced. The performance of VM4 will improved

because it will get more resources by WARS scheduling. Fig.3 shows the experiment

result. Because there are idle resources in the VM1 and VM4, the WARS scheduling will

adjust the CPU resources. The idle CPU resources of the VM1 and VM4 will be allocated

to the VM4. The computing time of the application run in the VM4 declines about 15%.

Figure 3. CPU Resources Allocation for Multiple VMs Running on the Same
Physical Machine (the Idle Resources are More than Needed Resources)

We notice that the CPU overall utilization only improves 6%. Although VM1, VM2

and VM4 have many idle resources, the VM3 need less CPU resources. So the CPU

overall utilization only improves 6%.

In the second set of experiment, we also run four VMs concurrently and the application

running in the VM is shown in table 2. The VM2, VM3 and VM4 are all CPU resources

shortage. Only VM1 has idle CPU resources. The excess CPU resources of VM1 will be

reclaimed by xen VMM. These excess CPU resources will be allocated to the VM2, VM3

and VM4 according to their CPU utilization. So the performance of the application

running on the VM2, VM3 and VM4 will be improved through WARS scheduling. The

performance of the application running on the VM1is not influenced, because only its

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

254 Copyright ⓒ 2015 SERSC

excess CPU resources are reclaimed by xen VMM. Fig.4 shows the experiment result.

The computing time of the application run in the VM2, VM3 and VM4 decline about

13%. Because the CPU resources requirement of the VM2, VM3 and VM4 is almost the

same, they will generate the same CPU resources request and get the same CPU

resources. Only the idle CPU resources of the VM1 are allocated to the VM2, VM3 and

VM4, the run time of the application run in the VM1 is almost not changed.

We also notice that the CPU overall utilization improves 14.6%, this is because the idle

CPU resources of VM3 is made full use of.

Fig.4. CPU Resources Allocation for Multiple VMs Running on the Same
Physical Machine (the Idle Resources are Less than Needed Resources)

In the third set of experiment, we run four VMs concurrently and all VMs are CPU

resources shortage. The application running in the VM is shown in table 3. We set

parameter ,4.0,2.0,0   ,6.0 ,8.0 and 0.1 respectively. Fig.5

shows the experiment results. When the parameter  is big and  is small, the VMM

will allocate more CPU resources to VMs which have more weight. On the contrary, the

VMM will allocate more CPU resources to VMs which have more resources requirement.

 and  reflect the significance of shares and resources utilization rate. When we use

parameters 0 , the computing time of the application run in the VM1 and VM4

declines about 15%, and the computing time of the application run in the VM2 and VM3

increases 24% and 11% respectively. With the increase of , the computing of the

application run on the VM1 increases and the computing time of the application run on

the VM3 and VM4 declines. With the increase of , the weight will become more

significance in resources allocation. The weight of VM1 is smallest. So its allocated

resources will less with the increase of . Similarly, the VM3 and VM4 will be allocated

more resources. We also notice that the computing time of the application run on the

VM2 first declines but then increases when the parameter .8.0 This is because the

influence of resources utilization is more than weight when the .8.0

We notice that the CPU overall utilization is not improved. This is because all VMs

have not idle resources.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 255

Figure 5. CPU Resources Allocation for Multiple VMs Running on the Same
Physical Machine (There are no Idle Resources)

Table 2. Application Types by Different VMs

VM VCPUs Application type size Used threads

VM1 4 Matrix multiplication 1248×1248 1

VM2 2 Matrix multiplication 1554×1554 2

VM3 3 Matrix multiplication 1972×1972 3

VM4 4 Matrix multiplication 2100×2100 4

Table 3. Application Types by Different VMs

VM VCPUs Application type size Used threads

VM1 2 Matrix multiplication 1554×1554 2

VM2 3 Matrix multiplication 1554×1554 2

VM3 4 Matrix multiplication 1972×1972 3

VM4 4 Matrix multiplication 2100×2100 4

5. Related Work

The task types worked in VM may be diverse. The scheduling algorithm pays little

attention on the task types of diversification would be unable to meet the requirement of

some VMs, such as latency-sensitive tasks running on the VM. The authors of [14]

proposed a scheduling algorithm based on the task types. To support real-time tasks in

VMs, Byung Ki Kim et al. [15] proposed a scheduling algorithm that support real time

tasks in VM have to finish before their deadline. Y. Hyun-jun et al. [16] considered the

overhead of privileged domain Dom0 and proposed a technique to make VM responded

with expected response time. The authors of [17] enhance the credit scheduler by making

it full-time aware of inter-VM events and physical interrupt request events that improve

the responsiveness of VMs doing mixed workloads. HwanjuKim et al. [18] presents

virtual machine scheduling techniques for transparently bridging the semantic gap

between the VMM and VMs. Task-aware scheduling [19] and Communication-aware

scheduling [20] are both application-aware scheduling strategies.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

256 Copyright ⓒ 2015 SERSC

The authors of [21] present an asymmetric virtual machine monitor (AVMM). AVMM

divides underlying platforms into two asymmetric partitions: a user partition and a service

partition. The user partition is assigned to most of the underlying resources and the

service partition consumes only the needed resources for its tasks. Near-native

performance is realized by AVMM by assigning a set of peripheral devices for exclusive

use by a single user OS, as well as efficient resource management.

6. Conclusions

In this paper, we have proposed a workload-aware CPU resources scheduling method

(WARS) to improve the CPU overall utilization. WARS is a periodical allocating

algorithm. With each periodical round consisting of CPU resources diagnose, request

more or less CPU resources to VMM and weight adjustment. WARS uses the allocated

and consumed credits to diagnose CPU resources requirements of VMs, which can

improve predictive ability further. Based on the predict information, WARS will adjust

the CPU resources dynamically. The adjustment of CPU resources is converted into

increased or decreased weight of VMs.

WARS is implemented confined to the VMM layer, without VM dependency. The

experiment results show that WARS can improve CPU resources overall utilization. We

also show that the performance of WARS is influenced by scheduling period. In the

future, we will research on the time of scheduling period.

Sometimes, the CPU utilization of the VM is not high, but one or more VCPUs of the

VM are very high. That is to say, the CPU utilization of different VCPUs is unbalanced.

For example, if a single-thread application running on the multi-VCPU VM, there will be

only one VCPU is very busy. In the next, we will consider the condition that some

VCPUs’ utilization of the VM is higher but others in the same VM are less and research

on CPU resources adjustment mechanism of VCPUs on the same VM.

Acknowledgements

This work is supported by Doctor Foundation of Henan Institute of Engineering,

Foundation of He’nan science and technology project, Foundation of He’nan Educational

Committee (13A520148), and a grant from National Science Fund for Young Scholars

（No. 61301232）

References

[1] Z. Y. Shao, H. Jin, Y. Li and J. Huang, “XenMVM: Exploring Potential Performance of Virtualized

Multi-core Systems”, Information-an International Interdisciplinary Journal, vol. 14, (2011), pp. 2315-

2326.

[2] S. B. Nigmandjanovich and C. W. Ahn, “Policy-based dynamic resource allocation for virtual machines

on Xen-enabled virtualization environment’, 2nd IEEE International Conference on Advanced Computer

Control, (2010).

[3] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta and R. West, “Friendly virtual machines: leveraging a

feedback-control model for application adaptation”, Proceedings of the 1st ACM/USENIX international

conference on Virtual execution environments, (2005).

[4] W. Lixi, X. Jing, Z. Ming, T. Yicheng and J. A. B. Fortes, “Fuzzy Modeling Based Resource

Management for Virtualized Database Systems”, Proceedings of the IEEE 19th International Symposium

on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, (2011).

[5] R. Jia, W. Yudi, G. Jiayu and X. C. Zhong, “DynaQoS: Model-free Self-tuning Fuzzy Control of

Virtualized Resources for QoS Provisioning”, IEEE Nineteenth IEEE International Workshop on Quality

of Service, (2011).

[6] J. Hai, D. Li, W. Song and S. Xuanhua, “Dynamic Processor Resource Configuration in Virtualized

Environments, Proceedings of IEEE International Conference on Services Computing, (2011).

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield,

“Xen and the art of virtualization”, ACM SIGOPS Operating Systems Review, vol. 37, (2003), pp. 164-

177.

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 257

[8] Credit scheduler. http://xen.org/files/summit_3/sched.pdf.

[9] C. A. Waldspurger, “Memory resource management in VMware ESX Server”, Proceedings of the Fifth

Symposium on Operating Systems Design and Implementation, (2002).

[10] W. Z. Zhang, H. L. Zhang, D. Zhang and T. Cheng, “Memory cooperation optimization strategies of

multiple virtual machines in cloud computing environment”, Journal of Computers, vol. 34, (2011), pp.

2265-2277.

[11] X. D. Liu, W. Q. Tong and Y. Hou, “BSPCloud: A Programming Model for Cloud Computing”, IEEE

12th International Conference on Computer and Information Technology, (2012).

[12] X. D. Liu, W. Q. Tong, F. Z. Ren and L. W. Zhao, “BSPCloud: A Hybrid Distributed-memory and

Shared-memory Programming Model”, International Journal of Grid and Distributed Computing, vol. 6,

no. 1, (2013), pp. 87-97.

[13] X. D. Liu, “A Programming Model for the Cloud Platform”, International Journal of Advanced Science

and Technology, vol. 57, (2013), pp. 75-82

[14] Y. Wang, X. Wang and H. Guo, “An Optimized Scheduling Strategy Based on Task Type In Xen”,

Advances in Automation and Robotics, vol. 2, (2012), pp. 515-522.

[15] B. K. Kim, K. W. Hur, J. H. Jang and Y. W. Ko, “Feedback scheduling for realtime task on xen virtual

machine”, Communication and Networking, (2011), pp. 283-291.

[16] Y. H. Jun, K. Y. Rok, K. J. Young and P. Sungyong, “A CPU Allocation Method Considering the

Control Domain Overhead in Xen Virtualization Environment”, Journal of KIISE: Computer Systems

and Theory, vol. 39, (2012), pp. 1-11.

[17] D. H. Liu, J. L. Cao and J. Cao, “FEAS: A full-time event aware scheduler for improving responsiveness

of virtual machines”, Proceedings of the Thirty-Fifth Australasian Computer Science Conference,

(2012).

[18] H. Kim, H. Lim, J. Jeong, H. Jo, J. Lee and S. Maeng, “Transparently bridging semantic gap in cpu

management for virtualized environments”, Journal of Parallel and Distributed Computing, vol. 71,

(2011), pp. 758-773.

[19] S. Govindan, J. Choi, A. R. Nath, A. Das, B. Urgaonkar and A. Sivasubramaniam, “Xen and Co.:

communication-aware CPU management in consolidated Xen-based hosting platforms”, IEEE

Transactions on Computers, vol. 58, (2009), pp. 1111-1125.

[20] H. Kim,H. Lim, J. Jeong, H.Jo and J. Lee, “Task-aware virtual machine scheduling for I/O performance”,

Proc. off the ACM SIGPLAN/ SIGOPS International Conference on Virtual Execution Environment,

(2009).

[21] Y. Z. Zhou, Y. X. Zhang, H. Liu, N. X. Xiong, A. V. Vasilakos, “A Bare-Metal and Asymmetric

Partitioning Approach to Client Virtualization”, IEEE Transactions on Services Computing, (2012).

Authors

Hongshan Qu. He is currently an Professor of Henan Institute of

Engineering. His primary research interests is network information

security

Xiaodong Liu. He received his Ph.D. degree from Shanghai

University. He is currently an associate Professor of Henan Institute

of Engineering. His primary research interests cover virtualization,

cloud computing and grid computing

http://xen.org/files/summit_3/sched.pdf

International Journal of Grid Distribution Computing

Vol. 8, No. 1 (2015)

258 Copyright ⓒ 2015 SERSC

Xuating Xu. She is currently an assistant of Henan Institute of

Engineering. Her primary research interests is cloud computing

