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Abstract Yy
0

Random constraint satisfaction problem models play a significant rafe 4
science. They provide instances for benchmarking algorlth , help i design of
algorithms and heuristics, and provide insight into proble dness paper, model

RA which was revised from classical model A, wa he eter k satisfied
k >3, model RA has the same satisfiability transm ode , W h was revised from
classical model B and has already got c0n3|derable theefetical an ctical studies. We also
compared the performances of fundamental alg s on mo@?A with on model RB.

Keywords: Constraint satisfaction pro%e@ode\ tisfiability transition

1. Introduction

mputer

Constraint programming [ﬂ%a generdi @ework for describing and modeling real-
world constraint problems agd solving t \s wildly studied. It is successfully applied to

many domains, such as sc ling, pI , vehicle routing, configuration, circuit design,
and bioinformatics. C nt satisfal tlon problem (CSP) is an important part of constraint
programming. CSP ectrum of scientific disciplines, such as computer
science, infor ory, anmtl al physics.

A typical @ tance inV@lves a large set of discrete variables, each one taking a finite
number of v and ion of constraints, each one involving a few variables and
forbidding some of thej nt values. A solution is an assignment, or joint values of all

variables, that satisfi he constraints simultaneously.

For some pur@/ve may wish to generate CSP instances on demand. There should be a
model to gengrate Yandom CSP instances automatically, then experiments were realized and
algorithms \werestested. A lot of benchmarks based on different CSP models are working on
area of al @ hm competitions. With the experiments and analyses of random models, better

0 nd heuristics would be proposed. Another reason to research on CSP models is

nding computational difficulty. The structure of solution space may be one of the

lin resolving the P=NP question. Classical random models were proposed [2, 3], denoted
by A, B, C and D. After that, many alternatives appeared [4-8].

Structure of solution space is thought to have critical effects on problem hardness and
algorithm ability. Satisfiability transition was first found in experiment [9]. From then on, a
lot of works in computer science were focused on a proof of transition phenomenon. Friedgut,
et al. [10] made a big step, they proved for k-SAT that satisfiability has sharp threshold.
Achlioptas, et al. [11] proved that clustering transition exists for some models. Physicists
applied cavity method on CSPs to calculate the transition points [12, 13]. There are very few
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CSP models which can be proved to have a satisfiability transition in rigorous ways, model
RB is one of them.

Model RB, revised from classical model B, is a type of CSPs model with growing domains.
It was proposed by Xu and Li in reference [5]. In the same paper they proved that the model
have exact satisfiability transition. The forced satisfiable instances generated from Model RB
are hard to solve [14, 15], and they are widely used in various kinds of algorithm
competitions. Model RB has got considerable attentions [16-21].

This paper is organized as follows. We will firstly give the definitions of revised models,
and explain the major difference between classical and revised models. In section 3, we will
focus on satisfiability transition of model RA. In section 4, we will do experiments on RA and
RB, and show RA and RB in some sense are similar.

0
2. Revised models

Both classical models and revised models were mtroduced in [16]. Here g|ve the
definitions of model RB and model RA. Let k>2 be an i et ra <1 be real
a |n

numbers, let 6 ={o,,0,,---,0,} be variables, each k from domain
D={1,2,---,N“}. A constraint involves k varia Ie set, which is a
subset of Cartesian product p*. Elements in inco le-set a ed incompatible joint

values. Model RB (N,k,r,a, p) is a probabil' ace, We@ne it by giving the way to
generate its instances. The steps are:

1. We select with repetition rN In consﬂ\i@Each random constraint is formed
f é

by selecting without repetition k o

2. For each constraint, we for

compa%-set by uniformly select without repetition
pN“ elements of D*.

There are Ck feasible constraints, each one shows

Similarly, steps to g nstarx eI RA(N,k,r,a, p) are:

I’ A constramt\
< Eln N
up with prob‘

Ck

2’. For every con ; there are N“¢ feasible joint values, each one shows up as

A solutign ds amassignment, which satisfies all constraints. It is to say joint values in this
solution d%&belong to any incompatible-sets. The set of all solutions, denoted by S, is a

subseté

@ be the number of solutions, X =|S|. It is easy to see that in model RB the
pegfation of X is E(X)=NN(1-p)™"". The following lemma shows that Model RB

has exact satisfiability transition, referring to [5, 19].

Lemma 1. Let I, = If o> 1 0< p<1are two constants and k , P satisfy

|(1—)

1
i ity k>——
the inequality 1-p’ then
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limPr(X >0)=1whenr<r,
limPr(X >0)=0whenr>r,

In classical and revised models, all variables have the same domains. If we draw a
variable-domain plane, classical models are along horizontal line. With N growing, size of
domains is fixed. Revised models are along curves. With N growing, sizes of domains are
growing. This is the major difference of classical models and revised models. See Figure 1,
revised model with different parameters are along different curves.

40

size of domain
[}
=]

Figure 1. Revised models are a{a urv sBszlable domain plane, instead
of horizontal lines. From b% to top curves relate to parameters

a= Q 65, oq .8 respectively

3. Satisfiability Trans non m

We define a new model; aIIed mo eI RB*, the difference between model RB* and model
RB is the first step rate ce. In the first step of RB¥*, select without repetition
n

rNInN randopg ints, eac dom constraint is formed by selecting without repetition

k of N vari@ s Wi a@e every instance of model RB* is an instance of model RB.

Lemma 2. When k > we generate an RB instance, the probability that it is also an
RB* instance goes t N growing.

Proof; Numb&instances in model RB* is Pcrg " , number of instances in model RB is
(Cry™N P, C are symbols standing for permutation and combination. Let n=C,
t=rN en

PrN InN 1 2 t— 1
@ %: 1— 1-Z .. 1-—|.
(CY) n n n

When k>3, t= o(%) , SO
t
(1—3](1—3]~--[1—QJ2[1—3) N
n n n n
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Lemma 3. Given constants 0<r, <r,0<p,<p, <1, let P, be the probability that an
instance of model RA(r =1, p=p,) is satisfiable, P, be the probability that an instance of
model RB*(r =1y, p=p,) is satisfiable. Then for any ¢ >0, there exists N,, when N >N,
PR-P<e.

Proof: We need to find a set of instances of model RA (r =1, p=p,), we use A to denote
this set. Let P, be the probability that instance in set A is satisfiable. We need A satisfy
condition 1: the probability that a RA instance belongs to set A goes to 1 with N growing,
and condition 2: P, <P,. If we have found such a set, when N is big enough, the probability

that a RA instance belongs to set A was bigger than 1—-¢,, where ¢, satisfied ¢; v

then P3>11 81>P £,50 R,>P,>R —&, P—P,<e&. In the rest of thi gwewm

1
find the set A, and verify that it satisfies condition 1 and CO@ 2.

We define set A: it is a set of instances of model =L PpER, ery instance in set
A contains more than r;NInN constraints, which in mo M p,N“* incompatible

joint valu-es. B OQ ,\%

To verify condition 1:

For instances of RA (r=r,p= IO1 er of its constramts X, follows

nN
binomial distribution with BeA als Ck cc S probablllty Ck , expected value

rN In rNInN
Ck
, and variance @C—k(&@) By Chebyshev’s inequality we have

>P(|X ~rNInN|< 12°N| N)

6 Ck rNInN(l_rNInN)
k k
=1-P( |x®NlnN|zuN|nN))21— Cy SN
2 (%NInN)Z

That i hy almost every instance of RA (r=r, p=p,;) have more than 2 hth NInN

when N large
sider one single constraint, let Y, be the number of its incompatible joint values,

ak _
1_ N pl(l Slj(l_)z _)1
(P, = P )N™)

Let Z, be the number of constraints which have more than p,N“* incompatible joint
values, so the probability

P(Yy > poN“) >1=P(|Yy = pN“| = (p, — p,)N“ ) =
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K
CN

P(Z, >r,NIn N)=ZP(ZN >rNINN| X, =i)P(X, =i). (1)

Every constraint in model RA select its incompatible joint values independently, and in
each constraint the probability that incompatible joint values is more than p,N“ is

P(Y, > p,N*). When X, =i, Z, follows binomial distribution with Bernoulli trials i, and

success probability P(Y, > p,N““). When i>-2—2 fo . " NIn N,

P(Z, >r,NINN|X, =i)>P(Z, >r,NInN|X, = 21NInN) \/,
L+h r+r1

> P, >ENINN X, =5 ENInN) P N@ 2)

When X, 2 1NInN , Zy follows bino Qﬂb W Bernoulli trials

2 D% NInN, and success probability P(Y, >®““) Us@tatlon W, to stand for this

distribution be W, , its expected value |s%vgN IE\\@ > p,N“), s0
PZ, >LNINN| X, ”A%
>1—PUWN ;?\,){ fo*hNInN- P(YN>p0N“k)—rNInND

DThN > PNE)- @-P(Y, > p,N))

We have

PN ) =N In N))>?

) ) I+
With N growing, ve formula goes to 1, because P(X, >-° L

NInN) in formula (2)

also goes to 1, we'get formula (1) goes to 1. We verified condition 1.

es). Actually each instance of model RA has a probability, which is the probability it
showg up when we generate an instance. Limited to A, each instance in A has a conditional

probability, denote the conditional probability by «(a),i=1,...,s, we have Zis:ly(a,.) =1.

For instances of model RB*, constraints have an order, because constraints are selected one
by one. Here we ignore the order, instances which have the same constraints are looked as
one instance. Now denote the instances by b,,...,b,, where | is the number of instances. Easy

to know every instance in model RB* has probability ,u(bj)z%,jzl,...,l . We say that
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instance @ is stronger than instance b, if @ can be gotten from b by putting some
constraints and incompatible joint values in. Instances of model RB* contain ryNInN

constraints, each constraint contains p,N“ incompatible joint values, so every instance & in
set A is stronger than some instances of model RB*. Let matrix C be of size sx|, let ¢; =0
if a is not stronger than b;, ¢; =1 if &, is stronger than b;. When a, is stronger than b;

P(a issatisfiable) < P(b; issatisfiable) .
So

P(a, issatisfiable) <—~—3"'_¢, P(b, issatisfiable)

j=171

Zh:lcih VV‘
- C
P(instances in Aissatisfiable) = i&%i‘isiis/%@)
siu(ai),iicijP(bj issat@le) \\/
DI . ®)
- ZZﬂ(a) i@@o gﬁ{@?
j=1i=1 & &\
Symmetry will simplify @above fo . 6"symmetry" we mean Z;ﬂ(ai )ﬁcij

are all equal for ar@,m,l . What we actually do in (3) is to split P(a; issatisfiable)
|

1 o
into Zhﬂcih 6®0h piec &are with a Z.—CP(bj issatisfiable) \yhere ¢; =1, then

h=1"1h

,u(ai)F!@Lssatisfiable)Sy(ai)zl;zzzlcijP(bj issatisfiable)

h=1"ih

. - s 1
"Symmetr'b\kys that every P(b; issatisfiable) corresponds to Zizl’u(ai)z—ccij equally.
h=1"1h

Tause no b; have reasons to be different, we will show "symmetry" in detail.
s 1 s 1
We only need to prove for m,ne{1,...,1}, Zi:y“(ai)—zu Cim —zi:y“(aﬁ)—zu Cin
h=1"ih

h=1"ih

Let b, , b, contain constraints Cyy,-v Copnin and CozresCopninn . Constraints C,,;

i=1---,,NINN ;| have incompatible joint values mm,i,v---’mm,i,pONak , similarly C,; have
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incompatible joint values mn,i,l""’mn’i'poNak. Based on b, ,b,, we define a bijection from

instances to instances. Firstly, based on b, ,b, , we define:

(1) A Dbijection from feasible constraints to feasible constraints, satisfied that
CrproCroninn are paired with C,-., Copwinn respectively.

(2) For each constraint pair C,; = C, ;,i=1,..,,NInN | define a bijection from feasible

joint values to feasible joint values, satisfied that mm,i,l'---vmm,i,poNak are paired with

Myigres i ponek respectively.
paired with b, .

For every a,, which is stronger than b, (or to say ¢, wﬁafe is a% ich is paired
with a; in above bijection. We get that @; also is stro r to,¥ay C;, =1), and

easy to know (&)= u(a;) . Furthermore Whe palr \V , easy to know

1(8) <t C = 1@ NN Corider ecti
zhl.h zhzlc,-h- So Zlh c im / @Eé\%ldermg about the bijection,

Then, in this way, we defined a bijection from instances to instances, and we knovg is

we find

"Symmetry" holds.
And because .

O&\igéz* Brg 2B
o -l

so forany J, 2

|
Ok P(instances in Ais satisfiable) < ZI} P(b, issatisfiable)
r=1
|
@O = (b, )P(b, issatisfiable) = P(instances in RB * is satisfiable).

r=1

We verified condition 2.

[04
Lemma 4. Instances of model RA with @ >0,0< p<1,r< m , k>3 w.hp.lare

satisfiable.

! *with high probability'(w.h.p.) means that the probability of some event tendsto 1, as N — o .
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o
Proof: ———— is a continuous and decreasing function with argument P, so there is

—In(1-p)

p,, satisfied p<p,<land r<

<% letnsatisfy r<n<————
Tin(-py)  —In(_p)" eSSy TSRS ATy

a
then we have p<p,, r<r, and I <——— . According to lemma 1, instances of

=In(1-p,)
RB(1, p;) w.h.p. is satisfiable. By lemma 2, easy to know instances of RB*(r;, p,) w.h.p. is
satisfiable. Finally by lemma 3, instances of RA(T: P)) w.h.p. is satisfiable.

Theorem 1. Model RA has the same satisfiability transition as model RB. Specifically, Igt

a 1 1
rB=———— =, 0<p<l, k>—
or (i p) and parameters satisfied o > . p 1-p ,and X is ber

of solutions of an RA instance, then

limPr(X >0)=1whenr<r *(4) @
I|m Pr(X>0)= Owhen® %
Proof; We can get formula (4) by lemma AQ([h the §a ethod, we can get a similar

lemma, and get formula (5).

4. Experiments on model RA a

Back-free algorithm and rand k algor Xe fundamental algorithms for CSPs. A
lot of theoretical works have one abOLTt . [22] proved back-free algorithm with unit
clause heuristic can solve 3-SAT with p obability, when constraint density below 2.9.
[23] proved back-free a @m with literal heuristic can w.h.p. solve 3-SAT, when
constraint density b 1.83. [24] praved random walk algorithm with pure literal heuristic
can w.h.p. solve 3- Nwhen density below 1.63.

We will give.st of thoseﬁgorithms, one is random walk algorithm, the other is a
kind of bac i applying them to model RB and RA, the results show that
when N is nO™v€ry smal el RA and model RB are almost the same.

Algorithm 1 (rangofWelk):
1. Give arando ighment. Set a maximum number of steps.

2. If cur@x}gnment satisfies all constraints, terminate the algorithm, output current

assignme e randomly select a constraint, and a variable in the constraint, reassign it a

value Q
. at step 2, until repeat time has gotten to the maximum number of steps, output *fail’.

Every dot in Figure 2 and Figure 3 is an average of 10 trials, the maximum number of steps
is 2000. We see that when I is small, problems can be solved by algorithm 1 with probability
1. Then the probabilities fall to 0 dramatically. The fallings happen almost at the same r
values on model RB and RA.
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. . .

O e 3. Algorithm 1 on model RA

Algorithm 2 (bac @7

1. Assign o, ar value.

To each o\ﬁm successively do 2. 3. 4
2. Assj current variable a random value.

Z%rrent variable is well assigned (do not violate any constraints with already assigned
variables), output the solution, terminate the algorithm, else record the value and reassign it
an unrecorded value.

4. If all values in domain are recorded, output "fail", terminate the algorithm, else repeat 3.

Every dot in Figure 4 is an average of 15 trials, Every dot in Figure 5 is an average by 20
trials. As we can see, probabilities to get a solution have similar shapes on model RB, and on
model RA. This experiment also shows RA and RB are very similar.
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@e 5. Algorithm 2 on model RA

an u‘ﬁ@hed manuscript, we proved that the probability to get a solution of

Actually in

algorithm 2 on A is:

% v w1 ININN
O iy Z(l (1-(1- p))"“)bin(j,C{, =l
1
Whe; bin(j,x, p)=C)p’(1-p)*’ . And when r+2/3+«/4/9+8rk Py PR . this
2k ~In(1-p)

probability goes to 1, as N growing.
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5. Conclusion

Since revised models were proposed, studies are mainly on model RB, RD. In this paper
we proved that model RA has the same satisfiability transition as model RB, when k >3. The
similar conclusion can also be extended to model RC. Experiments on model RA and RB
show that those two models are very similar. For particular questions, model RA may be
easier to analyze, so this paper provides basic properties of model RA.

Studies on CSP models shed light on computer science and information technology. More
works should be done, such as satisfiability transition study of model RA when k =2, such as
algorithm analyses on those models. And we think the future work would be not only on a
limitation situation, but also detailedly how properties change along lines of variable-domain
plane in Figure 1.
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