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Abstract 
 

Cuckoo Search Algorithm (CSA), a new meta-heuristic algorithm based on natural 

phenomenon of Cuckoo species and Lévy flights random walk has been widely and 

successfully applied to several optimization problems so far. In the paper two modified 

versions of CSA, where new solutions are generated using two distributions including 

Gaussian and Cauchy distributions in addition to imposing bound by best solutions 

mechanism are proposed for solving economic load dispatch (ELD) problem with multiple 

fuel options. The advantages of CSA with Gaussian distribution (CSA-Gauss) and CSA with 

Cauchy distribution (CSA-Cauchy) over CSA with Lévy distribution and other meta-heuristic 

are fewer parameters. The proposed CSA methods are tested on two systems with several 

load cases and obtained results are compared to other methods. The result comparisons have 

shown that the proposed methods are highly effective for solving ELD problem with multiple 

fuel options and/nor valve point effect.   

Keywords: Cuckoo Search algorithm, economic load dispatch, multiple fuel options, valve 

point effect, Gaussian distribution, Cauchy distribution 

Nomenclature 

 

aij, bij, cij fuel cost coefficients for fuel type j of unit i; 

eij, fij fuel cost coefficients for fuel type j of unit i reflecting valve-point effects; 

N total number of generating units; 

mi number of fuel types of unit i; 

Pi power output of unit i; 

Pi,max maximum power output of unit i; 

Pi,min minimum power output of unit i; 

Pij,min minimum power output for fuel j of unit i; 

PD total system load demand; 

PL total transmission loss; 
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1. Introduction 

The objective of economic load dispatch (ELD) is to minimize total fuel cost of 

thermal units while satisfying both equality and inequality constraints including load 

balance constraint, upper and lower generation limit on thermal units [1]. Traditionally, 

the fuel cost function of thermal unit is approximately represented as one single 

quadratic curve because each generating unit used only one fossil fuel to produces 

electricity. However, it is more realistic to represent the fuel function as a segmented 

piece-wise quadratic functions because several fuels are burned [2].  

Several methods have been applied for solving ELD problem with multiple fuel 

options so far. The lamda-iteration has been valued as a simple and effective one [3]. 

However, the disadvantages of the method are that the values of lamda and updated step 

size are randomly chosen initially. This can lead to a non-optimal solution or non-

convergence.  The best solution has been found after the method has been performed 93 

independent runs with various values of lamda and fuel type. The computational time 

for each trial is short but total time for whole is long. Enhanced Augmented Lagrange 

Hopfield Network (ALHN) [4] solves ELD problem in two phases and gains good 

solutions and short simulation time. However, the gained simulation results depend on 

setting a large number of parameters.  The Differential Evolution (DE) [5] algorithm is 

found to be a powerful evolutionary algorithm for global optimization in many real 

problems. Self-Adaptive Differential Evolution (SDE) [6] is a good method to solve 

ELD problem with valve point effects. The application of Hopfield neural network 

(HNN) [7] with merit of simplicity created difficulties in handling some kinds of 

inequality constraints. For solving the problem by the enhanced Lagrangian neural 

network (ELANN) [1] method, the dynamics of Lagrange multipliers including equality 

and inequality constraints were improved to guarantee its convergence to the optimal 

solutions, and the momentum technique was also employed in its learning algorithm to 

achieve fast computational time. Both HNN [7] and ELANN [1] were involved a large 

number of iterations for convergence.  

Particle Swarm Optimization [8] (PSO) is one of the modern heuristic algorithms and 

has a great potential to solve complex optimization problems. PSO algorithm is highly 

robust yet remarkably simple to implement. Thus, it is quite pertinent to apply the PSO 

with new modifications to achieve better optimization and handle the power system 

problems efficiently [9]. Hierarchical approach based on the numerical method 

(HNUM) [9] is one of conventional method which is non-effective for solving non-

smooth fuel cost function. With a parallel searching mechanism, the improved 

evolutionary programming (IEP) [11] method has a high probability of finding an 

optimal solution. By combining equivalent function and Lagrange multiplier theory or 

Hopfield Lagrange network, two methods including Lamda Iterative (LI) and Hopfield 

Lagrange network have been proposed for solving economic dispatch [12]. The two 

methods have obtained good solution quality; however, the applicability of the two ones 

is restricted on the system with valve point effect on thermal units. The genetic 

algorithm (GA) [13] is critically dependent on the fitness function and sensitive to the 

mutation and crossover rates, the encoding scheme of its bits, and the gradient of the 

search space curve leading toward solutions. 

The cuckoo search algorithm (CSA) developed by Yang and Deb in 2009 [14] is a new 

meta-heuristic algorithm for solving optimization problems inspired from the obligate brood 

parasitism of some cuckoo species by laying their eggs in the nests of other host birds of other 

species. To verify the effectiveness of the CS algorithm, Yang and Deb compared its 

performance with particle swarm optimization (PSO) and GA for ten standard optimization 
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benchmark functions [14]. As observed from the obtained results, the CSA method has been 

outperformed both PSO and GA methods for all test functions in terms of success rate in 

finding optimal solution and the number of required objective function evaluations. The 

highlighted advantages of the CSA method are fine balance of randomization and 

intensification and less number of control parameters. Recently, CSA has been successfully 

applied for solving non-convex economic dispatch (ED) problems considering generator and 

system characteristics including valve point loading effects, multiple fuel options, prohibited 

operating zones, spinning reserve and power loss [15]. In addition, CSA has been also used 

for solving the ED and micro grid power dispatch problems [16], economic emission dispatch 

problems [17], short-term hydrothermal scheduling problems [18] and photovoltaic system 

[19]. For these problems, CSA has been tested on many systems and obtained better solution 

quality than several methods in the literature such as HNN, GA, EP, Taguchi method, 

biogeography-based optimization (BBO), PSO, DE, and Tabu search. Therefore, CSA is an 

efficient method for solving optimal problems.  

In this paper, a cuckoo search algorithm (CSA) with different distributions including 

Gaussian distribution and Cauchy distribution, and bound by best solutions mechanism [20] 

are combined in order to solve ELD problems with multiple fuel options neglecting power 

losses in transmission systems and considering upper and lower generation of thermal units. 

The advantages of CSA with Gaussian distribution (called CSA-Gauss) and Cauchy 

distributions (called CSA-Cauchy) over CSA with Lévy distribution (called CSA- Lévy) in 

[14-18] not only are fewer equations and fewer control parameters but also reduce a step of 

evaluating fitness function value. The effectiveness of the proposed CSA has been tested on 

two systems where valve point effect considered with several load cases and the obtained 

results have been compared to those from other methods available in the literature. 

 

2. Related Work 

Conventional CSA has been successfully used for solving economic load dispatch problem 

in [15-16] and emission economic load dispatch in [17]. The method is slightly modified by 

using other distributions, Cauchy and Gaussian distributions and bound by best solution 

mechanism for handling power balance constraint.   
 

3. Problem Formulation 

The objective of the ED problem with multiple fuel options is only to minimize the 

total cost of thermal generating units while satisfying different constraints including 

power balance and generation limits.  

Mathematically, the problem is formulated as follows: 
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when the valve point effect of thermal units are considered, fuel cost function for fuel type j 

of unit i is determined by: 
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Subject to: 

 Power balance constraints: the power generated by all thermal units must be 

equal to load demand  

 

1

0
N

i D

i

P P


    (4) 

 Generator operating limits: 

 
min maxi i iP P P    (5) 

 

4. Cuckoo Search Algorithm for ELD Problems with Multiple Fuel 

Options 

4.1.  Calculation of Generation for Slack Thermal Unit 

To guarantee that the equality constraint (4) is always satisfied, a slack generating unit 1 is 

selected and therefore its power output will be dependent on the power output of remaining 

N-1 generating units in the system. Suppose that the power output of the N-1 generating units 

are known, the power output of the slack unit s is calculated based on (4) as follows:  

 
1

2

N

D i

i

P P P


    (6) 

4.2. Bound by Best Solutions 

In ELD problems, a solution generated may contain some dimensions violating the limits 

of maximum and minimum generation. The issue is solved by assigning the maximum or 

minimum generation to the invalid dimensions as the dimension is either higher or lower than 

upper or lower generation. Instead, a bound by best solutions algorithm is introduced by 

Ahmed S. Tawfik et al [20]. There is a bound by best ratio rbbb defined as in equaiton (7) in 

order to find valid dimensions for the invalid dimensions. A number is then generated 

randomly. If the random number is less than bound by best ratio, the invalid dimension is 

initialized in range of minimum and maximum value of it. Otherwise, the invalid one is 

replaced with another valid dimension drawn randomly from another nest.  

 1 1/bbbr D    (7) 

where D is the number of dimensions.  

 

4.3. Cuckoo Search Algorithm Implementation to The Problem  

The main steps for the proposed CSA for solving EELD problem are described as follows: 

 

4.3.1. Initialization: A population of Np host nests is represented by X = [X1, X2, …, XNp]
T
, 

where each nest Xd = [Pd2, ……, PdN] (d = 1, …, Np) representing for power output of from 

the generating unit 2 to  unit N except the slack unit Pds1 is initialized by: 

 
min 1 max min*( )di i i iX P rand P P     (8) 

where rand1 is a uniformly distributed random number in [0, 1] for each population of the 

host nests. 

Based on the initial population of nests, the fitness function to be minimized corresponding 

to each nest for the considered problem is calculated: 
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where Ks is a penalty factor for the slack unit; Pd1 is power output of the slack thermal unit 

calculated from (6) corresponding to nest d in the population. 
lim

sP is the limit for the slack 

unit in (9) is obtained by: 
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  (10) 

where P1max and P1min are the maximum and minimum power outputs of slack thermal unit 1, 

respectively. 

The initial population of the host nests is set to the best value of each nest Xbestd (d = 1, 

…, Nd) and the nest corresponding to the best fitness function in (9) is set to the best nest 

Gbest among all nests in the population. 

 

4.3.2. Generation of New Solution via Lévy Flights: The new solution by each nest is 

calculated as follows: 

 
2

new new

d d dX Xbest rand X      (11) 

Where  > 0 is the updated step size; rand2 is a normally distributed stochastic number; 

and the increased value Xd
new

 is determined by:  

 ( ); j 1,2,....., N 1new
dj jXd sum y      (12) 

Where: 

 For Cauchy distribution: 

 
3( *((pi*rand (1, N 1) 0.5)));jy s      (13) 

 And for Gaussian distribution:  

 
4 5(2* log( (1, 1) *sin( *rand (1, N 1)));jy rand N       (14) 

Where N is the number of thermal and hydro units, rand3, rand4 and rand5 are the 

distributed random numbers in [0, 1]. 

For the newly obtained solution, its lower and upper limits should be satisfied according to 

the generating unit’s limits by using bound by best solutions algorithm 

The fitness function (9) will be calculated for the new eggs and are compared to that of old 

eggs so as to keep the better ones.   

 

4.3.3. Alien Egg Discovery and Randomization: The action of discovery of an alien egg in 

a nest of a host bird with the probability of pa also creates a new solution for the problem 

similar to the Lévy flights. The new solution due to this action is calculated as follows: 

 dis dis

d d dX Xbest K X     (15) 

Where K is the updated coefficient determined based on the probability of a host bird to 

discover an alien egg in its nest: 

 61     if 

0    otherwise

arand p
K


 


  (16) 

And the increased value Xd
dis

 is determined by: 

  7 1 2( ) ( )dis

d d dX rand randp Xbest randp Xbest      (17) 

Where rand6 and rand7 are the distributed random numbers in [0, 1] and randp1(Xbestd) 

and randp2(Xbestd) are the random perturbation for positions of nests in Xbestd. 
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Similar to the solution obtained via Lévy flights, this new solution is also redefined as in 

section 4.2, and each nest Xbestd and the best value of all nests Gbest are set based on fitness 

value obtained from (9). 

 

4.3.4. Stopping Criteria: The proposed algorithm is terminated when the current iteration is 

equal to the maximum number of iteration.  
 

4.3.5. The Overall Procedure: The overall procedure of the proposed CSA for solving the 

ELD problems is described as follows. 

 Step 1: Select parameters for the CSA including number of host nests Np, probability of a 

host bird to discover an alien egg in its nest Pa, and maximum number of iterations 

Nmax. 

 Step 2: Initialize a population of Np host nests as in Section 4.3.1 and calculate the power 

output for the slack unit 1 as in Section 4.1.  

 Step 3: Evaluate the fitness function using (9) and store the best value for each nest Xbestd 

and the best value of all nests Gbest in the population. Set the initial iteration 

counter n = 1. 

 Step 4: Generate a new solution via Lévy flights as described in Section 4.3.2 and 

calculate the power output for the slack unit as in Section 4.1.  

 Step 5: Evaluate the fitness function using (9) for the newly obtained solution and 

determine the new Xbestd and Gbest via comparing the values of the fitness 

function.  

 Step 6: Generate a new solution based on the probability of pa as in Section 4.3.3 and 

calculate the power output for the slack unit 1 as in Section 4.1 

 Step 7: Evaluate the fitness function using (9) and determine the newly best Xbestd and 

Gbest for the new obtained solution. 

 Step 8: If n<Nmax, n = n + 1 and return to Step 4. Otherwise, stop. 

 

5. Results and Discussions  

The proposed algorithm is coded in Matlab platform and run twenty independent 

trials for each test case on a 2 GHz Laptop with 2 GB of RAM. There are two 10-unit 

systems tested to validate the effectiveness of the proposed method. The valve point 

effect on thermal units is neglected for system one but for system 2. In addition, there 

are four load cases of 2400, 2500, 2600 and 2700 MW for the first system whereas only 

2700 MW load demand is considered for the second one.   

 

5.1. Selection of Parameters 

In the proposed CSA method, three main parameters which have to be predetermined 

are the number of nests Np, maximum number of iterations Nmax, and the probability of 

an alien egg to be discovered Pa. 

Among the three parameters, the number of nests significantly effects on the 

obtained solution quality. Normally, the larger number of NP is chosen the higher 

probability for a better optimal solution is obtained. However, the simulation time for 

obtaining the solution in case of the large numbers is long. Thus, the selection of NP is 

an important task. By experience, the number of nests in this paper is set to 30. Similar 

to NP, the maximum number of iterations Nmax also has an impact on the obtained 

solution quality and computation time. It is chosen based on the complexity and scale of 

the considered problems. For the test system above, the maximum number of Nmax is set 



International Journal of Hybrid Information Technology 

Vol.8, No.1 (2015) 

 

 

Copyright ⓒ 2015 SERSC  311 

to 400. The value of the probability for an alien egg to be discovered can be chosen in 

the range [0, 1]. However, different values of Pa may lead to different optimal solutions 

for a problem. For the complicated or large-scale problems, the selection of value for 

the probability has an obvious effect on the optimal solution. In contrast, the effect is 

inconsiderable for the simple problems, that is different values of the probability can 

also lead the same optimal solution. In this paper, the value of the probability  is 

selected in range from 0.1 to 0.9 with a step of 0.1 whereas the number of nests and the 

maximum number of iterations are predetermined in advance. 
 

5.2. Obtained Results 

5.2.1. System with Multiple Fuel Options and without Valve Point Effect : In the section, 

the two proposed methods have been tested on one system consisting of 10 generating units 

[1], each with two or three piecewise quadratic cost functions representing different fuel 

types. Total demands are gradually changed from 2,400 MW to 2,700 MW in steps of 100 

MW neglecting power losses. For all test cases, the number of nests and iterations are set to 

the fixed values of 5 and 400, respectively. In case of 2400 MW load demand, both CSA-

Cauchy and CSA-Gauss are performed twenty independent trials for each value of probability 

Pa ranging in from 0.1 to 0.9. The result obtained including minimum cost, average cost, 

maximum cost, standard deviation and computational time by the two methods for 2400 MW 

load demand corresponding to different values of Pa are given in Tables 1 and 2. The best 

cost for load cases of 2500, 2600 and 2700 MW obtained by CSA-Cauchy and CSA-Gauss at 

the best value of Pa are summarized in Table 3. The result comparison among the proposed 

method and others are indicated in Tables 4, 5, 6 and 7 corresponding to 2400 MW, 2500 

MW, 2600 MW and 2700 MW load demands. Clearly, CSA-Cauchy and CSA-Gauss can 

obtain either better cost than or equal cost to others. Note that HNN [7] gets the best cost for 

2400 MW, 2500 MW and 2600 MW load demands, however, the power generated by HNN 

[7] is less than load demand. Besides, all methods take approximate computational time 

nearly less than one second. Therefore, the proposed method is effective for the ELD 

problems with multiple fuel options and without valve point effect on thermal units. The best 

solutions obtained by CSA-Cauchy and CSA-Gauss are shown in Tables 8 and 9, 

respectively.           

Table 1. Result obtained by CSA-Cauchy for 2400 MW Load Case with 
Different Values of Pa. 

Pa Min total 

cost ($) 

Average total 

cost ($) 

Max total 

cost ($) 

Std. dev. 

($) 

Avg. CPU 

(s) 

0.1 481.7228 481.72451 481.7301 0.00212365 0.6 

0.2 481.7226 481.7227 481.7229 8.3666E-05 0.59 

0.3 481.7226 481.722615 481.7228 4.7697E-05 0.62 

0.4 481.7227 481.7227 481.7227 0 0.63 

0.5 481.7226 481.7226 481.7226 0 0.6 

0.6 481.7226 481.722615 481.7227 3.5707E-05 0.62 

0.7 481.7226 481.72263 481.7227 4.5826E-05 0.64 

0.8 481.7226 481.72263 481.7227 4.5826E-05 0.62 

0.9 481.7226 481.72284 481.726 0.00072622 0.63 
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Table 2. Result obtained by CSA-Gauss for 2400 MW Load Case with 
Different Values of Pa. 

Pa 

Min total 

cost ($) 

Average total 

cost ($) 

Max total 

cost ($) 

Std. dev. 

($) 

Avg. 

CPU (s) 

0.1 481.7247 481.75094 481.8777 0.035413972 0.6 

0.2 481.7249 481.72995 481.7457 0.005070355  0.59 

0.3 481.7229 481.72503 481.7346 0.002623376  0.62 

0.4 481.7227 481.72347 481.7252 0.000709295  0.63 

0.5 481.7226 481.72284 481.7235 0.000205913  0.6 

0.6 481.7226 481.722745 481.723 0.000132193  0.62 

0.7 481.7226 481.722675 481.7228 6.22495E-05  0.64 

0.8 481.7226 481.722695 481.7228 7.39932E-05  0.62 

0.9 481.7226 481.722765 481.7232 0.000173997  0.63 

Table 3. Result obtained by CSA-Gauss and CSA-Cauchy for 2500, 2600 
and 2700 MW Load Cases 

PD 

(MW) 

Method Pa Min 

cost ($) 

Average 

cost ($) 

Max cost 

($) 

Std. dev. 

($) 

CPU 

(s) 

 

2500 

CSA-Cauchy 0.5 526.2388 526.2388 526.2388 0 0.62 

CSA-Gauss 0.4 526.2388 526.2388 526.2389 0 0.6 

 

2600 

CSA-Cauchy 0.4 574.3808 574.4169 574.7413 0.1081 0.64 

CSA-Gauss 0.4 574.3808 574.3992 574.7413 0.0785 0.66 

 

2700 

CSA-Cauchy 0.4 623.8092 624.2982 626.2543 0.9780 0.62 

CSA-Gauss 0.5 623.8092 624.6651 626.2548 1.1662 0.64 

Table 4.  Comparison of Fuel Cost and 
CPU Time for Load Demand of 2,400 MW 

Method Total power 

(MW) 

Cost 

($/h) 

CT 

(s) 

HNN [7] 

ELANN[1] 

SDE [6] 

ARCGA [13] 

IEP [11] 

DE [5]  

ALHN [4] 

LI [12] 

HLN [12] 

MPSO [8] 

HNUM [10] 

CSA-Cauchy 

CSA-Gauss 

2,399.8  

2,400  

2,400 

2,400 

2,400  

2,400  

2,400  

2,399.9978  

2,400 

2,400 

2,401.2 

2,400 

2,400 

481.87  

481.74   

481.8628 

481.743 

481.779 

481.723 

481.723 

481.7217 

481.7226 

481.723 

488.50 

481.7226 

481.7226 

~60  

11.53  

 

0.85 

- 

- 

0.008 

7.84 

0.124 

- 

1.08 

0.6 

0.64 

 

Table 5.  Comparison of Fuel Cost and 
CPU Time for Load Demand of 2,500 MW 

Method Total power 

(MW) 

Cost 

($/h) 

CT 

(s) 

HNN [7] 

ELANN[1] 

SDE [6] 

ARCGA [13] 

IEP [11] 

DE [5]  

ALHN [4] 

LI [12] 

HLN [12] 

MPSO [8] 

HNUM [10] 

CSA-Cauchy 

CSA-Gauss 

2,499.8  

2,500  

2,500  

2,500  

2,500  

2,500  

2,500 

2,500  

2,500  

2,500 

2,500.1 

2,500 

2,500 

526.13 

526.27 

526.3232 

526.259 

526.304 

526.239 

526.239 

526.239 

526.2388 

526.239 

526.7 

526.2388 

526.2388 

~60 

12.25 

- 

0.85 

- 

- 

0.043 

2.508 

0.11 

- 

- 

0.62 

0.6 
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Table 6.  Comparison of Fuel Cost 
and CPU Time for Load  Demand of 

2,600 MW 

Method Total 

power 

(MW) 

Cost 

($/h) 

CT 

(s) 

HNN [7] 

ELANN[1] 

SDE [6] 

ARCGA [13] 

IEP [11] 

DE [5]  

ALHN [4] 

LI [12] 

HLN [12] 

MPSO [8] 

HNUM [10] 

CSA-Cauchy 

CSA-Gauss 

2,599.8  

2,600  

2,600  

2,600  

2,600  

2,600  

2,600 

2,600 

2,600 

2,600 

2,599.3 

2,600 

2,600 

574.26  

574.41 

574.538  

574.405 

574.473 

574.381  

574.381 

574.7412 

574.7413 

574.381 

574.03  

574.3808 

574.3808 

~60  

~9.99 

- 

0.85 

- 

- 

0.047 

6.871 

0.152 

- 

- 

0.64 

0.66 

 

Table 7.  Comparison of Fuel Cost and 
CPU Time for Load Demand of 2,700 MW 

Method Total 

power 

(MW) 

Cost 

($/h) 

CT 

(s) 

HNN [7] 

ELANN[1] 

SDE [6] 

ARCGA [13] 

IEP [11] 

DE [5]  

ALHN [4] 

LI [12] 

HLN [12] 

MPSO [8] 

HNUM [10] 

CSA-Lévy [15] 

CGA-MU [20] 

IGA-MU [20] 

CSA-Cauchy 

CSA-Gauss 

2,700  

2,699.7  

2,700  

2,700  

2,700  

2,700  

2,700 

2699.9995 

2,700 

2,700 

2,702.2 

2,700 

2,700 

2,700 

2,700 

2,700 

626.12 

623.88 

623.9225 

623.828 

623.851 

623.809 

623.809 

623.8089 

623.8092 

623.809 

625.18 

623.8092 

623.8095 

623.8093 

623.8092 

623.8092 

~60 

21.36 

- 

0.85 

- 

- 

0.057 

6.221 

0.225 

- 

- 

0.679 

19.42 

5.47 

0.62 

0.64 
 

Table 8. Best Solutions by CSA-Cauchy for Load Demand Cases 

Unit PD=2400 MW PD=2500 MW PD=2600 MW PD=2700 MW 

 Fuel Gen (MW) Fuel Gen (MW) Fuel Gen (MW) Fuel Gen (MW) 

1 1 189.7409 2 206.5144 2 216.4785 2 218.2503 

2 1 202.3413 1 206.4493 1 210.9338 1 211.6861 

3 1 253.8795 1 265.7170 1 278.4871 1 280.6636 

4 3 233.0472 3 235.9623 3 239.0739 3 239.6155 

5 1 241.7778 1 258.0080 1 275.5404 1 278.5551 

6 3 233.0445 3 235.9537 3 239.1303 3 239.6482 

7 1 253.2645 1 268.8956 1 285.7381 1 288.5958 

8 3 233.0381 3 235.9598 3 239.1013 3 239.6231 

9 1 320.4039 1 331.4828 1 343.5123 3 428.5077 

10 1 239.4622 1 255.0571 1 272.0043 1 274.8545 

Table 9. Best Solutions by CSA-Gauss for Load Demand Cases 

Unit PD=2400 MW PD=2500 MW PD=2600 MW PD=2700 MW 

 Fuel Gen (MW) Fuel Gen (MW) Fuel Gen (MW) Fuel Gen (MW) 

1 1 189.7509 2 206.5467 2 216.5440 2 218.2236 

2 1 202.3556 1 206.4651 1 210.9076 1 211.5977 

3 1 253.9436 1 265.6894 1 278.5493 1 280.7745 

4 3 232.9954 3 235.9648 3 239.0997 3 239.6140 

5 1 241.8100 1 257.8910 1 275.5226 1 278.5130 
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6 3 233.0387 3 235.9660 3 239.0966 3 239.6407 

7 1 253.3112 1 268.9140 1 285.7068 1 288.8672 

8 3 233.0327 3 235.9874 3 239.0962 3 239.5967 

9 1 320.3529 1 331.4919 1 343.4951 3 428.3415 

10 1 239.4091 1 255.0836 1 271.9821 1 274.8311 

 
5.2.2. System with Multiple Fuel Options and Valve Point Effect: In section, a 10-unit 

system with multiple fuel options and valve point effect on thermal units is considered [21]. 

The load demand is 2700 MW and the power losses in transmission line are neglected. For 

implementation of CSA-Cauchy and CSA-Gauss, the number of nest and maximum number 

of iterations are set to 10 and 1000, respectively. The best value of Pa is found at 0.2 for both 

CSA-Cauchy and CSA-Gauss. The results obtained by the proposed methods are compared 

with other methods including improved genetic algorithm with multiplier updating (IGA-

MU), conventional genetic algorithm (CGA) with multiplier updating (CGA-MU) [21], new 

PSO (NPSO), PSO with a simple local random search (PSO-LRS), new PSO with a simple 

local random search (NPSO-LRS) [22] in Table 10. As observed from the table, CSA-Cauchy 

and CSA-Gauss can get better cost than all methods. In term of computational time, the 

proposed methods are faster than CGA-MU [21] and IGA-MU [21] and lightly slower than 

the rest of methods. The best solution for the proposed methods are indicated in Table 11.  

Table 10.  Comparison of Fuel Cost and CPU Time for System with Valve Point 
Effect of Thermal Units 

Method 
Min cost 

($) 

Average 

cost ($) 

Max cost 

($) 

Std. dev. 

($) 

Avg. 

CPU (s) 

CSA- Lévy [15] 623.8684 623.9495 626.3666 0.2438 1.587 

PSO-LRS [22] 624.2297 625.7887 628.3214 - 0.93 

NPSO [22] 624.1624 625.218 627.4237 - 0.41 

NPSO-LRS [22] 624.1273 624.9985 626.9981 - 1.08 

CGA-MU [21] 624.7193 627.6087 633.8652 - 25.65 

IGA-MU [21] 624.5178 625.8692 630.8705 - 7.14 

CSA-Cauchy 623.8566 624.1160 626.3440 0.7395 2.1 

CSA-Gauss 623.8564 624.3618 626.3474 0.9826 2.2 

Table 11. Best Solutions by CSA-Gauss and CSA-Cauchy for System with 
Valve Point Effect 

Unit CSA_Cauchy CSA_Gauss 

 Fuel Pi (MW) Fuel Pi (MW) 

1 2 218.1322 2 218.1067 

2 1 211.4116 1 210.6692 

3 1 281.6867 1 280.6682 

4 3 238.7456 3 239.9578 

5 1 279.8622 1 279.9982 

6 3 240.3328 3 239.5265 
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7 1 287.7978 1 287.7462 

8 3 238.3435 3 239.6854 

9 3 427.8687 3 427.9883 

10 1 275.8188 1 275.6534 

   

6. Conclusion 

In this paper, two versions of Cuckoo Search Algorithm including CSA-Cauchy and 

CSA-Gauss have been implemented for solving economic load dispatch problems with 

multiple fuel options and valve point effect on thermal units. In stead of using Lé vy 

distribution, the advantages of Cauchy distribution and Gauss distribution over Lévy 

distribution are fewer parameters and fewer equations. In addition, the bound by best 

solution algorithm can enable CSA to find better new dimensions in case that the 

dimensions violate their limits. CSA-Cauchy and CSA-Gauss have been tested on two 

systems with several load cases and the result comparisons with other methods have 

indicated that the proposed methods are more efficient and faster than most of methods 

for solving ELD problem with multiple fuel options and/nor valve point effect.  
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