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Abstract 

This paper investigate the NP-hard absolute value equation (AVE) Ax - |x| = b, where 

A is an arbitrary square matrix whose singular values exceed one. The significance of the 

absolute value equation arises from the fact that linear programs, quadratic programs, 

bimatrix games and other problems can all be reduced to the linear complementarity 

problem that in turn is equivalent to the absolute value equation. This paper present a 

new smoothing function to the AVE. Based on this function, a smoothing Newton method 

is proposed for solving the AVE under the less stringent condition that the singular values 

of A exceed 1. The global convergence of the method is established under appropriate 

conditions. Preliminary numerical results indicate that this method is promising. 

 

Keywords: Absolute value equation, smoothing function, singular value, smoothing 

Newton method 

 

1. Introduction 

We consider the absolute value equation (AVE): 

Ax x b                                  (1) 

where n nA R  , , nx b R , and x  denotes the vector with absolute values of each 

component of x . A slightly more general form of the AVE (1) was introduced in John 

(2004) and investigated in a more general context in Mangasarian (2007a).  

As were shown in Cottle .(1968,1992), the general NP-hard linear complementarity 

problem (LCP) that subsumes many mathematical programming problems can be 

formulated as an absolute value equation such as (1). This implies that AVE (1) is NP-

hard in general form. Theoretical analysis focuses on the theorem of alternatives, various 

equivalent reformulations, and the existence and nonexistence of solutions. John (2004) 

provided a theorem of the alternatives for a more general form of AVE (1), 

Ax B x b , and enlightens the relation between the AVE (1) and the interval matrix. 

The AVE (1) is shown to be equivalent to the bilinear program, the generalized LCP, and 

the standard LCP if 1 is not an eigenvalue of A  by Mangasarian (2006). Based on the 

LCP reformulation, sufficient conditions for the existence and nonexistence of solutions 

are given.  

Prokopyev (2009) proved that the AVE (1) can be equivalently reformulated as a 

standard LCP without any assumption, and discussed unique solvability of AVE (1). Hu 

and Huang (2009) reformulated a system of absolute value equation as a standard linear 

complementarity problem without any assumption and give some existence and convexity 

results for the solution set of the AVE (1). 

It is worth mentioning that any LCP can be reduced to the AVE (1), which owns a very 

special and simple structure. Hence how to solve the AVE directly attracts much 

attention. Based on a new reformulation of the AVE (1) as the minimization of a 
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parameter-free piecewise linear concave minimization problem on a polyhedral set, 

Mangasarian (2007b) proposed a finite computational algorithm that is solved by a finite 

succession of linear programs. In the recent interesting paper of Mangasarian (2009a), a 

semismooth Newton method is proposed for solving the AVE (1), which largely shortens 

the computation time than the succession of linear programs (SLP) method. It shows that 

the semismooth Newton iterates are well defined and bounded when the singular values of 

A  exceed 1. However, the global linear convergence of the method is only guaranteed 

under more stringent condition than the singular values of A  exceed 1. Mangasarian 

(2009b) formulated the NP-hard n-dimensional knapsack feasibility problem as an 

equivalent AVE (1) in an n-dimensional noninteger real variable space and proposed a 

finite succession of linear programs for solving the AVE (1).  

A generalized Newton method, which has global and finite convergence, was proposed 

for the AVE by Zhang 2009). The method utilizes both the semismooth and the 

smoothing Newton steps, in which the semismooth Newton step guarantees the finite 

convergence and the smoothing Newton step contributes to the global convergence. A 

smoothing Newton algorithm to solve the AVE (1) was presented by Louis Caccetta 

(2011). The algorithm was proved to be globally convergent and the convergence rate was 

quadratic under the condition that the singular values of A  exceed 1. This condition was 

weaker than the one used in Mangasarian (2009a). 

Recently, AVE (1) has been investigated in Jiri Rohn (2009a, 2009b), Yong 

(2009,2010), and Noor . (2011a, 2011b). Yong (2010, 2011a) adopted particle swarm 

optimization (PSO) and harmony search (HS) algorithm to AVE (1), and smoothing 

Newton method for AVE (1) based on aggregate function in Yong (2011b). Noor (2011a, 

2011b) proposed two iterative methods for solving AVE (1). 

In this paper, we present a new method for solving AVE (1). We replace the absolute 

value function by a smooth one given by Li (2011). With this smoothing technique, the 

non-smooth AVE (1) is formulated as a smooth nonlinear equations, furthermore, we 

studied properties of the smooth problem. Then we adopt smoothing Newton method to 

AVE (1). This algorithm is proved to be globally convergent and the convergence rate is 

linearly at least under the condition that the singular values of A exceed 1. The numerical 

experiments show that the proposed algorithm is effective in dealing with the AVE (1). 

In section 2, we give some propositions or lemmas that ensure the solution to AVE (1) 

exists. In section 3, we give a smoothing function and study its properties which will be 

used in the next section. In section 4 we describe smoothing Newton method to AVE (1). 

Convergence analyses is demonstrated in section 5. Effectiveness of the method is 

demonstrated in section 6 by solving some given AVE (1) with singular values of A  

exceeding 1. Section 7 concludes the paper. 

We now describe our notation. All vectors will be column vectors unless transposed to 

a row vector. The scalar (inner) product of two vectors x  and y  in the n-dimensional 

real space nR  will be denoted by Tx y . For nx R  the 2-norm will be denoted by ||x||, 

while |x| will denote the vector with absolute values of each component of x . The 

notation m nA R   will signify a real m n  matrix. For such a matrix TA  will denote the 

transpose of A . We write I  for the identity matrix, e  for the vector of all ones. A vector 

of zeros in a real space of arbitrary dimension will be denoted by 0. { }iX diag x  for the 

diagonal matrix whose elements are the coordinates ix  of nx R . 

 

2. Preliminaries 

The following results by Mangasarian . (2006) and Jiri Rohn (2009a) characterize 

solvability of AVE (1). 
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Proposition 2.1 (Mangasarian,2007a). (Existence solution) 

(i) If 1 is not an eigenvalue of A  and the singular values of A  are merely greater or 

equal to 1, then the AVE (1) is solvable if the set S  , where 

    0, 0S x A I x b A I x b       . 

(ii) If 0b   and A


<γ/2, where γ = mini |bi|/maxi |bi |, then AVE (1) has exactly 2
n
 

distinct solutions, each of which has no zero components and a different sign 

pattern. 

Proposition 2.2 (Mangasarian, 2006). (Unique solvability of AVE (1)).  

(i) The AVE (1) is uniquely solvable for any nb R  if the singular values of A  

exceed 1. 

(ii) The AVE (1) is uniquely solvable for any nb R  if 1 1A  . 

Proposition 2.3 (Mangasarian, 2006). (Existence of nonnegative solution).  

Let 0A  , 1A   and 0b  , then a nonnegative solution to the AVE (1) exists. 

Proposition 2.4 (Jiri Rohn,2009b). If the interval matrix [A −I, A + I ] is regular, then 

for each right-hand side b  the equation Ax x b  has a unique solution. 

Lemma 2.1 [22] For a matrix n nA R  , the following conditions are equivalent. 

(i) The singular values of A  exceed 1. 

(ii) The minimum eigenvalue of TA A  exceeds 1. 

1 1A  . 

Lemma 2.2 Suppose that A  is nonsingular and 1 1BA  . Then BA  is nonsingular. 

Proof We first show that 
1I A B  is nonsingular.  

For, if not, then for some non-zero vector nx R  we have that 
1( ) 0I A B x  , which 

shows 1 1x Bx B xA A   , so 1 1BA  , a contradiction.  

Since 
1( )A I A B  is nonsingular, we have BA  is nonsingular. 

Lemma 2.3 Let 1 2( , , , )nD diag d d d  with [ 1,1], 1,2, ,i i nd   . Suppose that 

1 1A  . Then A D  is nonsingular. 

Proof Since 1 1 1D D DA A    , by Lemma 2.2, we have A D  is nonsingular. 

Let : n nH R R  be a locally Lipschitzian vector function. Sun and Han (1997) 

introduced a generalized Jacobian cH . Let Clarke’s generalized Jacobian be H . Then 

cH H   .  

For the function ( )H x Ax x b  , at any 
nx R , by simple computation, we have  

 ( ) ( ) : [ 1,1], 1,2, ,c iH x A diag d d i n      . 

Hence, by Lemma 2.3, we have 

Lemma 2.4 Suppose that A  is nonsingular and 1 1A  . Then, all ( )V H x  are 

nonsingular. 

Lemma 2.5 If 
n nF R   and 1F  , then I F  is nonsingular and 

 
1

0

= k

k

I F F






   With  
1 1

1
I F

F


 


. 



International Journal of Control and Automation 

Vol.9, No.2 (2016) 

 

 

122  Copyright ⓒ 2016 SERSC 

Proof Suppose I F  is singular. It follows that 0I F x ( )  for some nonzero x . 

But then x Fx  implies 1F  , a contradiction. Thus I F  is nonsingular. To 

obtain an expression for its inverse consider the identity  

  1

0

=
N

k N

k

F I F I F 



 
  

 
 . 

Since 1F   it follows that lim 0k

k
F


  because 

kkF F . 

Thus, 
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It follows that  
1

0

= k

k

I F F






  . From this it is easy to show that  
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Theorem 2.1 Suppose that the singular values of A  exceed 1. Then the set 

1 { : ( ) }nL x R xH     is bounded for any 0  . 

Proof. If the singular values of A  exceed 1, Then, from Lemma 2.1, we have 

min ( ) 1TA A  . Use the fact that 
T TAx x A Ax  and 

TA A  is symmetric matrix, we 

have 

 min( ) = ( ) 1Tx Ax x b Ax x b Ax x b A A x bH           

. 

Thus, for any 1x L , 

 min ( ) 1TA A x b    , 

That is, 

min

+

( ) 1T

b
x

A A







 

This is means that 1L  is bounded. 

Remark 2.1 We can not guarantee that the set 
1 { : ( ) }nL x R xH     is 

bounded for any 0   if 
1 1A  . For example, if we set ,A I b  , then for 

all 0x  , we can obtain that 1x L . Obviously, the set 1L  is unbounded. 

 

3. Properties of Smoothing Function 

Define : n nH R R  by 

( ) :H x Ax x b  .                       (2) 
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It is clear that x  is a solution of the AVE (1) if and only if ( ) 0xH  . H  is a 

nonsmooth function due to the non-differentiability of the absolute value function. In this 

section we give a smoothing function of H  and study its properties.  

Firstly, we give some basic concepts. 

Definition 3.1 A function ( ) : n nxH R R   is called a smoothing function of a 

nonsmooth function ( ) : n nxH R R  if, for any 0  , ( )xH  is continuously 

differentiable and, for any 
nx R ,

0,
( )= ( )lim

y x
y xH H


 

. 

Definition 3.2 [24] Let ( ) : n nxH R R  be a locally Lipschitz continuous function. 

(i) ( ) : n nxH R R   is called a regular smoothing function of ( )xH  if, for any 

0  , ( )xH  is continuously differentiable and, for any compact set 

nD R  and 0  , there exists a constant 0L   such that, for any x D  

and (0, ]  , ( ) ( )x x LH H


  . 

(ii) ( )xH  is said to approximate ( )xH  at x  superlinearly if, for any y x  and 

0  , we have 
'

( ) ( ) ( )( ) ) ( )(y x y y x y x OH H H o
 

     . 

(iii) ( )xH  is said to approximate ( )xH  at x  linearly if, for any y x  and 

0  , we have 
'

( ) ( ) ( ) ( )( )( )y x O Oy y x y xH H H
 

    . 

(iv) ( )xH  is said to approximate ( )xH  at x  quadratically if, for any y x  and 

0  , we have 
2'

( ) ( ) ( ) ( )( )( )y x O Oy y x y xH H H
 

    . 

It is clear that a regular smoothing function of ( )xH  is a smoothing function of 

( )xH . 

In the following, we recall some good properties of a smoothing approximation 

function to the absolute value function proposed by Li (2011). Let 

2
( )= arctan( )

t
t

 
, 

2

2

1
( ) ( ) ( ) ln 1

t
t t dt t t     

 

 
    

 
 . 

More precisely, for any 0  , we have the following proposition from Li (2011). 

Proposition 3.1.  

(i) 
[ ( )]

( )
d t

t
dt





 ; 

(ii) 
[ ( )]

( ) 1
d t

t
dt





  ; 

(iii) ( )t t  ;  

(iv) 0 - ( ) , [ , ] [ , ],0t t M t a              , 0M   is a constant. 

Let ( )x x  , where ( ) , 1,2, ,i ix x i n   , obviously absolute value function 

ix  is non-differentiable. We can apply the function ( )t  to smooth the absolute value 

function.  

The smoothing function to the function ( )ix  is derived as  
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2

  
2

1
( ) ( ) ln 1 i

i i i

x
x x x   

 

 
   

 
, 1,2, ,i n . 

where 
2

( )= arctan( )i
i

x
x

 
, 1,2, ,i n . 

For any 0  , let  1 2( ) ( ), ( ), , ( )
T

nx x x x       .  

Define : n nH R R   by  

( ) ( )x xH Ax b   .                  (3) 

Clearly, for any 0  , ( ) ( )x xH Ax b    is a smoothing function of 

( )H x Ax x b  .  

Now we give some properties of ( )xH . By simple computation, for any 0  , the Jacobian 

of ( )xH  at nx R  is  1 2
' ( ), ( ), , ( ) .( ) nx x xxH A diag        

Theorem 3.1 Suppose that 1 1A  . Then '( )xH  is nonsingular for any 0  . 

Proof Note that for any 0  , ( ) 1ix  , 1, 2, ,i n . 

Hence, by Lemma 2.3, we have '( )xH  is nonsingular. 

Let  1 2( ), ( ), , ( )nE x x xdiag       . Then '( )xH A E    is nonsingular. 

The following theorem gives the boundedness of the inverse matrix '( )xH . 

Theorem 3.2 Suppose that 1 1A  . Then, for any 0   and any 
nx R , 

1

1

1

'

1
( )][

A

A
xH









. 

Proof Since  1 2( ), ( ), , ( )nE x x xdiag       , ( ) 1ix  , 1,2, ,i n , then 

1E  . By Theorem 3.1, we have A E  is nonsingular. Let 1A EF   , 

= ( )A E A I F  , so 

1 1 1( )A E I F A    （ ） . 

Thus 

1 1

1 1 -1 1

1

' (
1 1

( )][ ) ( )
A A

A
F A E

xH A E I F

 

  


    

 
 (by Lemma 2.5) 

Combining with 1E  , we have 

1

1

1

'

1
( )][

A

A
xH









. 

Theorem 3.3 Let ( )H x  and ( )xH  be defined as (2) and (3), respectively. Then, 

(i) ( )xH  is a regular smoothing function of ( )H x . 

(ii) ( )xH  approximates ( )H x  at x  at least linearly.  

Proof (i) Since ( )- ( ) x yH x H y   , ( )H x  is a locally Lipschitz continuous 

function. For any 0  , ( )xH  is continuously differentiable and for any (0, ]  , 

and 

[ , ] [ , ],0ix D a          , 
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2

1
,( ) ( )( ) +( ) ( )

n

i ii
x x LxH H x x x    


 
        

Where =L Mn  . 

(ii) By simple computation, we have 

1 1 1 1 1

2 2 2 2 2'

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

n n n n n

y x y y x

y x y y x

y x y y x

y x y y xH H H

 

 

 

 

 

 

 

     
 
    
 
 
     

    . 

Since, for 1,2, ,i n , 

  ( ) ( )( )i i i i iy x y y x       

( ) ( )( )i i i i i i iy y x y y y x          

( ) ( )i i i i i i iy y x y y y x          

2 = ( ) ( ).i i i iM y x O y x O       

Hence ( )xH  approximates ( )H x  at x  at least linearly. 

Theorem 3.4 Suppose that the singular values of A  exceed 1. Then  

(i) The set 
2 { : ( ) }nL x R xH


    is bounded for any 0   and 0  . 

(i) For any constants 0   and 0  , 
3 { : ( ) ,0 }nL x R xH


        is 

bounded. 

Proof 

(i) Let  1 2( ) ( ), ( ), , ( )
T

nx x x x       . Then  

2 2 2 2 2 2

1 2 1 2( ) ( )+ ( )+ + ( )n nx x x x x x x x            . 

Suppose that the singular values of A  exceed 1. Then, from Lemma 2.1, we have 

min ( ) 1TA A  . Use the fact that 
T TAx x A Ax  and 

TA A  is symmetric matrix, we 

have  

min

  ( ) = ( ) ( )

( ) ( )T

x Ax x b Ax x b

Ax x b A A x x b

H
  



 

 

    

     
 

Thus, for any 2x L , 

min ( )TA A x x b    , 

That is, 

min

+

( ) 1T

b
x

A A
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 This is means that 
2L  is bounded. 

(ii) For any 
3x L , we have  

min min

+ +

( ) 1 ( ) 1T T

b b
x

A A A A

 

 
 

 
 

Define : nR R   by  

21
( )

2
( )x H x  . 

For any 0  , Define : nR R   by  

21
( )

2
( )x H x   . 

We can get the following theorem. 

Theorem 3.5 Suppose that 1 1A  . Then, for any 0   and nx R  , ( ) 0x   

implies that ( ) 0x  . 

Proof For any 0   and nx R , 

'( ) [ ( )] ( )Tx x xH H    . 

By Theorem 3.1, '( )xH  is nonsingular. Hence, if ( ) 0x  , then ( )=0xH  and 

( ) 0x  . 

 

4. Algorithm 

Now, we are going to develop the smoothing Newton method for solving ( ) 0xH  . 

The method is very similar to the one in [12]. This algorithm was firstly proposed in [24] 

for solving complementarity and variational inequality problems. The major difference 

between our method and the method in [12] lies in the use of the smoothing functions. 

The smoothing function in [12] is constructed based on the 
2 2x   smoothing function 

while our smoothing function is obtained on the basis of the smoothing function ( )x . 

The steps of our smoothing Newton method are stated below. 

Algorithm 4.1   

Step 0. Choose constants (0,1)  , (0, )   , (0,0.5)  , 1 (0, )    and 

2 (2, )   . Let 
0 nx R  be an arbitrary point; let : 0k   and 

0 0:y x . 

Step 1. Let 
k nd R  satisfy  

'( ) ( ) 0k k

k kH y H y d
 

  .                       (4.1) 

If (4.1) is unsolvable or if  

2

1( ) ( )k

k T k kd y d



     

dose not hold, let 

= ( )k

k kd y

 . 

Step 2. Let kl  be the smallest nonnegative integer l  satisfying 
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( ) ( ) ( )k k k

k l k k l k T ky d y y d
  
        . 

If  

( )k
k

lk k kH y d


    , 

or if  

1
( ) ( )

2
klk k kH y d H x  , 

let  

1 1 1: , :klk k k k ky y d x y     , 

and  

 1 10 min 0.5 , ( ) .k k kx      

Replace k  by 1k   and go to Step 1. Otherwise, let 

: klk k ky y d  , 

and go to Step 1. 

 

5. Convergence Analysis 

In order to discuss the convergence properties of Algorithm 4.1 we make the following 

assumption. 

Assumption 5.1 

(i) There exists a constant 0   such that 

1 : { : ( ) ,0 }nD x R xH


        

is bounded. 

(ii) For any constants 0   and 0  , the following set: 

, : { : ( ) }nL x R x
      

is bounded. 

(iii) There exists a constant 0c   such that 
2 : { : ( ) }nD x R x c


    is bounded. 

(iv) For any constants 0   and , ( ) 0nx R x

    implies that ( ) 0x


  . 

The convergence results of Algorithm 4.1 are summarized in following Theorems. 

Theorem 5.1 [24] Suppose that Assumption 5.1 holds. Then, an infinite bounded 

sequence  kx  is generated by Algorithm 4.1 and any accumulation point of  kx  is a 

solution of the AVE (1). Furthermore, suppose that x  is an accumulation point of  kx  

generated by Algorithm 4.1, all ( )V H x  are nonsingular and  
1

' ( )k

kH x




 
   is 

uniformly bounded for all 
kx  sufficiently close to x  . If ( )xH  approximates ( )xH  at 

x  linearly at least, then the whole sequence  kx  converges to x  linearly at least. 

Theorem 5.2 Suppose that 1 1A  . Then, an infinite bounded sequence  kx  is 

generated by Algorithm 4.1 and the whole sequence  kx  converges to the unique 

solution of the AVE (1) at least linearly. 
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Proof By Theorems 2.1, 3.4 and 3.5, assumption 5.1 holds. It follows from Lemma 2.4 

and Theorem 3.2 that all ( )V H x  are nonsingular and  
1

' ( )k

kH x




 
 

 is uniformly 

bounded for all  kx  sufficiently close to x . From Theorem 3.3, we have that ( )xH  

approximates ( )xH  at x  linearly at least. Hence, we get the result of this theorem by 

Theorem 5.1. 

Remark 5.1 Recently, a generalized Newton method [9] is proposed for the AVE (1). 

It is proved in Proposition 7 [9] that the generalized Newton method converges linearly 

from any starting point to the unique solution of the AVE (1) under the conditions that 
1 0.25A   and ( ) 0kD x  . From Theorem 5.2, the proposed method in this paper 

converges linearly at least from any starting point to the unique solution of the AVE (1) 

under the condition that 1 1A  . This condition is weaker than the ones used in [9]. 

 

6. Computational Results 

In this section we perform some numerical tests in order to illustrate the 

implementation and efficiency of the proposed method. The proposed algorithm was 

implemented in MATLAB 7.6. Throughout the computational experiments, the 

parameters used in the algorithm were set as δ =0.5, β = 1, σ = 0.0005, ρ1 = 10
−8

, ρ2 = 2.1, 

and 
0 1  . We used 6| | 10Ax x b 


    as the stopping rule. All the experiments were 

performed on Windows XP 64 System running on an Hp desktop with Intel(R) Xeon(R) 

4×2.4GHz and 6GB RAM. In all instances the Algorithm 4.1 performs extremely well, 

and finally converges to an optimal solution of the AVE. 

Problem 1. Let A  be a matrix whose diagonal elements are 500 and the nondiagonal 

elements are chosen randomly from the interval [1,2]  such that A  is symmetric. Let 

eIAb )(   where I  is the identity matrix of order D  and e  is 1n  vector whose 

elements are all equal to unity such that (1, 1, ,1)Tx   is the exact solution. 

Here the data (A, b) can be generated by following Matlab scripts: 

 

 

Figure 1. Generating Data (A, B) By the Matlab Scripts 

D=input('Dimension of matrix A=') 

rand('state',0); 

A1=zeros(D,D); 

for i=1:D 

  for j=1:D 

    if i==j 

      A1(i,j)=500; 

    elseif i>j  

      A1(i,j)=1+rand; 

    else  

      A1(i,j)=0; 

    end 

  end 

end 

A=A1+(tril(A1,-1))'; 

b=(A-eye(D))*ones(D,1) 
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and we set the random-number generator to the state of 0 so that the same data can be 

regenerated. Let the initial guess is 0 (0, 0, ,0)Tx  . Numerical results of this problem 

are presented in Table 1.  

Table 1. Computational Results from Algorithm 4.1 

Dimens

ion 

Problem 1 Problem 2 

No. of 

Iterations. 

Optimal 

θ(x) 

No. of 

Iterations. 
Optimal θ(x) 

4 22 
5.4202e-

025 
24 1.4037e-025 

8 38 
5.7104e-

028 
49 1.9062e-027 

16 34 
4.9323e-

027 
168 1.7157e-025 

32 47 
6.8549e-

025 
86 2.7625e-024 

Problem 2. Let the matrix A  is given by 

, 1 1,4 , , 0.5, 1, 2, , .ii i i i i i ja D a a D a i D       

Let eIAb )(   where I  is the identity matrix order D  and e  is 1n  vector whose 

elements are all equal to unity such that (1, 1, ,1)Tx   is the exact solution. Let the 

initial guess is equal to 0 (0, 0, ,0)Tx  . The numerical results are shown in Table 1. 

The iteration processes of objective function values ( )x  and ( )x  of 4D   are 

respectively shown in Figure 2 and Figure 3. 
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Figure 2. Iteration Processes of Objective Function Values ( )x  and ( )x  for 

Problem 1 
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Figure 3. Iteration Processes of Objective Function Values ( )x  and ( )x  for 

Problem 2 

We omitted plots for the others (D = 8, 16, 32) to save space and also in consideration 

of the fact that they display more or less the same trend.  

Problem 3. Following we consider some randomly generated AVE problem with 

singular values of A  exceeding 1 where the data (A, b) are generated by the Matlab 

scripts: 

rand('state',0); 

b=rand(D,1); 

A=rand(D,D)'*rand(D,D)+D*eye(D); 

and we set the random-number generator to the state of 0 so that the same data can be 

regenerated. Let the initial guess is equal to 0 (0, 0, ,0)Tx  . The numerical results are 

shown in Table 2. 

Table 2. Computational Results from Algorithm 4.1 

Dimension No. of Iterations. Optimal θ(x) Time (seconds) 

4 43 1.8698e-026 0.096553 

8 67 7.1464e-026 0.169669 

16 184 7.0503e-030 0.565197 

20 240 3.2137e-030 0.742510 

25 402 6.7458e-034 1.532336 

 

7. Conclusion 

We have proposed a new smoothing function to the AVE (1). Based on this function, 

we develop a smoothing Newton method for solving the AVE. Under appropriate 

conditions, we establish the global convergence of the method. Possible future work may 

consist of investigating other smoothing function and other optimization algorithm for 

AVE (1). 
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