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Abstract 

Reinforcement learning has been very challenging in learning how to play video games 

without human interaction. However, recent studies on deep reinforcement learning were 

very successful to master the learning with only high-dimensional raw input data. In this 

paper, we build the general agent for playing 2D shooting games using various deep 

reinforcement algorithms. By using this agent, we can compare the performance of the 

algorithms in multiple aspects. The architecture of the agent is modularized to allow 

sharing common parts and training each model independently. Also, the hyper-

parameters for training the models are fully described. We compare the performance of 

the algorithms using various metrics provided by the proposed agent. It shows that the 

agent is very efficient for training each model and comparing their performance.  
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1. Introduction 

Learning to play video games has been a very challenging problem in reinforcement 

learning (RL) [1]. The goal of RL is to learn an optimal policy for choosing an action on a 

given environment, which results in maximizing a cumulative future reward. Previously, 

most RL agents had been relied on manually-selected features which was usually time-

consuming and incomplete. Whereas recent agents, which is called deep RL agents, learn 

feature representations directly from high-dimensional raw input data such as images and 

videos using a convolutional neural network (CNN) architecture [2]. However, deep RL 

still has challenging issues. Since the reward is sparse and delayed, it is very hard to 

associate the chosen action with the given reward. Also, sequences of states of a video 

game are highly correlated, which leads to overfitting and falling into a local minimum.  

To be successful in deep RL, the agent should derive main features from raw video 

input and use these past experiences to new situations to gain the maximum reward. There 

have been many improvements in deep RL to solve these problems. Deep Q-Network 

(DQN) used a separated target neural network and an experience replay technique [3]. 

Asynchronous Advantage Actor-Critic (A3C) took advantage of a multi-threaded agent 

while asynchronously updating a global neural network using policy gradient [4]. [4] also 

introduced a recurrent agent which combines A3C with Long Short Term Memory 

(LSTM) [5]. It uses LSTM for interpreting the features which were extracted from CNN 

since it can remember previous states and use them for making predictions.  

In this paper, we provide a general agent that can make use of various RL algorithms 

and compare their performance metrics in multiple aspects. The agent can play 2D 

shooting games using only raw pixels on the screen and tries to gain the maximum score.  

The next section introduces related works on common environment for playing games 

and the RL algorithms that our agent will use, which have been most successful in the last 
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several years. In Section 3, we propose the architecture of the agent for playing 2D 

shooting games. All the hyper-parameters that were used in our models are described in 

detail. In Section 4, we compare the performance metrics of each RL algorithm in various 

aspects. The paper concludes with a short discussion. 

 

2. Related Works 
 

2.1. OpenAI Gym 

OpenAI Gym is an Atari emulator for comparing various kinds of RL algorithms [6]. 

Since it gives you standardized set of environments for play Atari games, users can write 

a general algorithm and compare it from other algorithms. When the agent takes an action 

in the environment, it receives a state, reward, and other information related to the current 

step. The initial state of the environment is randomly chosen, and the agent interacts with 

the environment until it reaches a terminal state. The goal of the agent is maximizing the 

expectation of total reward per episode and achieving a high level of performance in as 

few episodes as possible. We used OpenAI Gym as a standard environment for our agent 

just as other RL researches did [7,8,9]. 

 

2.2. Deep Q-Networks (DQN) 

[3] suggested DQN which trains CNN from high-dimensional sensory input using RL. 

An agent uses the network to maximize the expected return Rt 
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from time step t where γ is a discount factor and T is the time at which the game 

terminates and rt is a reward from a state st. The output of the network is a Q-value 

function 
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which estimates maximum Rt when observing a state s and taking an action a where π 

is a policy mapping sequences to actions. The agent selects an action at that maximize a 

Q-value to interact with an unknown environment. The agent updates the network using 

following loss function: 
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where 
i  is a Q-Network parameter and 

i  is a target network parameter at iteration i. 

i  is only updated with 
i  every C steps while 

i  is updated every time step.  

 

2.3. Asynchronous Advantage Actor-Critic (A3C) 

While DQN uses a single agent that interacts with a single environment, [4] uses 

multiple agents which each have their own copy of the environment. Each agent selects an 

action at according to its policy π at each time step t. The value function of state st under 

policy π is defined as 

 ( ) |t t tV s R s  ,  (4) 

which is the expected return for following policy π from state st. To determine how 

good it is to take an action at in a state st compared to average, an advantage function  

( , ) ( , ) ( )t t t t tA s a Q s a V s     (5) 
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Figure 1. Illustration of the Network Architecture of Our Models We Used for 
Our Experiments 

is used where a state-action value function is 

1 1( , ) [ ( ) | , ]t t t t t tQ s a r V s s a    . (6) 

Also, to express how good the policy π is, an objective function  

( ) [ ( )]oJ V s   (7) 

is defined. The gradient of the objective function J(θ) is approximately derived as  

( ) log ( | ) ( , )t t t tJ a s A s a       , (8) 

which can be used to optimize the objective function J(θ). 

 

3. Proposed Architectures and Training Method 

We now present a deep RL agent for playing 2D shooting game. The purpose of this 

agent is adopting various RL algorithms in a modular manner and comparing their 

performance in multiple aspects. In this paper, we compare three RL algorithms which are 

DQN, A3C, and A3C combined with LSTM (A3C+LSTM). Using the recurrent neural 

network, particularly the LSTM network, is helpful to remember information for an 

arbitrary long amount of time. To provide a common environment to the agent, we used 

OpenAI Gym. 

Figure 1 shows the architecture of our model that the agent uses. To reduce input 

dimensionality, raw input is preprocessed as follows: A 210×160 pixel image with RGB 

color is converted to a gray-scale and down-sampled and cropped to a 84×84 image. Also, 

four subsequent frames are stacked up together to produce vectorized input to the network. 

The model consists of 3 convolutional layers, 3 fully-connected (FC) layers and 1 

recurrent layer. All convolutional layers are shared, whereas 2 FC layers are used for 

DQN and A3C, and the other is used for A3C+LSTM. The number of filters in the three 

convolutional layers are 32 (8×8, with stride 4), 64(4×4, with stride 2), 64(3×3, with 

stride 1) and the Rectified Linear Unit (ReLU) is used for an activation function. The final 

hidden layer of DQN and A3C is FC with 512 cells, whereas the final layer of 

A3C+LSTM is LSTM with 512 cells. Both output layers are FCs with 6 outputs for each 

action.  

In a shooting game, rewards are normally delayed upon a specific action, which makes 

it difficult for the agent to learn which action is responsible for what reward. Also, the 

scale of scores varies depending on the types of enemies hit. To limit the scale of the error 

derivatives, we fixed all positive rewards to be 1 while leaving 0 reward unchanged. This 

can improve the performance of our agent since it does not differentiate between various 

rewards. 
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If the agent uses consecutive samples while learning, this leads to strong correlations 

between samples, resulting network parameters get stuck in a poor local minimum, or 

even diverge. The agent breaks the correlations by random sampling. To explore a wide 

range of states in the domain space, the agent uses ɛ-greedy strategy that selects a random 

action with a probability ɛ and follows the optimal policy with a probability 1-ɛ. The 

value of ɛ decreases linearly from 0.5 to 0.1 until 70,000 time steps. Also, when using 

DQN, the replay memory and the separated target Q-network are used for breaking the 

correlation. The agent stores 500,000 most recent frames in the replay memory, and 

randomly samples a minibatch of size 32 from the replay memory. The agent uses this 

minibatch to train the DQN parameters and updates the target network every 10,000 step. 

Whereas, when using A3C or A3C+LSTM, the agent uses 8 threads interacting with their 

own copies of the environment. To prevent overwriting each thread’s update, the samples 

are accumulated over 8 time steps before they are used for updating network parameters. 

Also, to make the exploration policies differ, each thread uses ɛ-greedy strategy when 

selecting an action.  

 

 

Figure 2. Learning Speed Comparison for DQN, A3C and A3C+LSTM on 
Space Invaders 
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4. Experiments 

We have performed experiments on Space Invaders from OpenAI Gym to compare the 

performance of DQN, A3C and A3C+LSTM. Our models were implemented using Keras 

[10] with Tensorflow backend and trained on a NVIDIA GTX 1070. All networks were 

optimized using the RMSProp optimizer [11] with the learning rate 1×10-4 until the  

maximum number of episodes reached, which was 74,000. The discount factor γ was set 

to 0.99. 

Figure 2 compares the learning speed of the three algorithms using the total reward the 

agent collects in an episode. When we compared the reward, it was not clipped, which 

means it is same with the total score of the game. The plot on the above shows the 

average value of the reward over 738 episodes interval. After 15,000 episodes, the reward 

in DQN did not increased anymore, while the rewards in A3C and A3C+LSTM kept 

increasing. The reward in A3C was noisy compared to the one in A3C+LSTM. The plot 

on the below shows the linear trendline of the reward. It is clear that A3C+LSTM learned 

faster than others, while DQN was the slowest. Table 1 shows the actual average score 

 

 

Figure 3. Plot of the Performance Metrics Obtained by DQN on Space 
Invaders 

Table 1. Score Comparison for DQN, A3C and A3C+LSTM 

Algorithm Average Score Max Score 

DQN 390.1 3058.5 

A3C 479.4 2884.5 

A3C+LSTM 557.3 3286.5 
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and the average of the top 10 highest scores of the game over the entire episodes. Again, 

A3C+LSTM gained the top average score and the top maximum score in three algorithms.   

Figure 3 compares the performance metrics obtained by DQN while training. The plot 

on the above compares the reward with the Q-value as a function of episode. Two metrics 

were averaged over 738 episodes interval. The Q-value function, which estimates how 

much discounted reward the agent can get by following its policy, was more stable than 

the reward plot. The plot of two metrics showed similar curves over the entire episodes. 

The plot on the below compares the mean absolute error (MAE) with the loss as a 

function of the time step while optimizing network. Two metrics were averaged over 

22105 time steps interval. We could not observe any divergence issues and their plots 

were similar smooth curves.  

 

 

 

Figure 4. Plot of the Value and the Reward Obtained by A3C and A3C+LSTM 
on Space Invaders 

Figure 4 compares the output of the value function with the reward obtained by A3C 

and A3C+LSTM while training. Both metrics were averaged over 738 episodes interval. 

The plots on the above compares them in A3C. Both plots were noisy but showed very 

similar curves. When we plotted the reward, the plot of the value followed similar curves 

after a few episodes later. The plot on the below compares them in A3C+LSTM. Both 

plots were more stable than that of A3C. Also, both values of the metrics grew faster than 
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that of A3C, but we could not observe any similarity between the reward and the value 

just as in A3C.  

 

5. Conclusion 

In this paper, we have presented a complete architecture of the RL agent for playing 

2D shooting games. By using the agent, we could compare the performance of recent 

successful RL algorithms in various aspects. Experiment results showed the correlation 

between the performance metrics, such as the reward and Q-value in DQN, and MAE and 

the loss in DQN, and the value and the reward in A3C and A3C+LSTM. The experiment 

also showed that A3C+LSTM was fastest in terms of the learning speed and achieved a 

highest score among other algorithms.  

For future work, we plan to expand the scope of adopted RL algorithms using various 

hyper-parameters on wide-range of environment. By doing this, we can make a new 

algorithm that combines advantages of the existing algorithms.  
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