
International Journal of Control and Automation

Vol. 11, No. 3 (2018), pp.193-200

http//dx.doi.org/10.14257/ijca.2018.11.3.17

ISSN: 2005-4297 IJCA

Copyright © 2018 SERSC Australia

Deep Reinforcement Learning Agent for Playing 2D Shooting

Games
1

Dongcheul Lee1 and Janise McNair2

1Department of Multimedia Engineering, Hannam University, Korea
2Department of Electrical and Computer Engineering, University of Florida, USA

1jackdclee@gmail.com, 2jymcnair@ufl.edu

Abstract

Reinforcement learning has been very challenging in learning how to play video games

without human interaction. However, recent studies on deep reinforcement learning were

very successful to master the learning with only high-dimensional raw input data. In this

paper, we build the general agent for playing 2D shooting games using various deep

reinforcement algorithms. By using this agent, we can compare the performance of the

algorithms in multiple aspects. The architecture of the agent is modularized to allow

sharing common parts and training each model independently. Also, the hyper-

parameters for training the models are fully described. We compare the performance of

the algorithms using various metrics provided by the proposed agent. It shows that the

agent is very efficient for training each model and comparing their performance.

Keywords: Deep learning, 2D shooting game, reinforcement learning, general agent

1. Introduction

Learning to play video games has been a very challenging problem in reinforcement

learning (RL) [1]. The goal of RL is to learn an optimal policy for choosing an action on a

given environment, which results in maximizing a cumulative future reward. Previously,

most RL agents had been relied on manually-selected features which was usually time-

consuming and incomplete. Whereas recent agents, which is called deep RL agents, learn

feature representations directly from high-dimensional raw input data such as images and

videos using a convolutional neural network (CNN) architecture [2]. However, deep RL

still has challenging issues. Since the reward is sparse and delayed, it is very hard to

associate the chosen action with the given reward. Also, sequences of states of a video

game are highly correlated, which leads to overfitting and falling into a local minimum.

To be successful in deep RL, the agent should derive main features from raw video

input and use these past experiences to new situations to gain the maximum reward. There

have been many improvements in deep RL to solve these problems. Deep Q-Network

(DQN) used a separated target neural network and an experience replay technique [3].

Asynchronous Advantage Actor-Critic (A3C) took advantage of a multi-threaded agent

while asynchronously updating a global neural network using policy gradient [4]. [4] also

introduced a recurrent agent which combines A3C with Long Short Term Memory

(LSTM) [5]. It uses LSTM for interpreting the features which were extracted from CNN

since it can remember previous states and use them for making predictions.

In this paper, we provide a general agent that can make use of various RL algorithms

and compare their performance metrics in multiple aspects. The agent can play 2D

shooting games using only raw pixels on the screen and tries to gain the maximum score.

The next section introduces related works on common environment for playing games

and the RL algorithms that our agent will use, which have been most successful in the last

Received (December 18, 2017), Review Result (February 6, 2018), Accepted (February 8, 2018)

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

194 Copyright © 2018 SERSC Australia

several years. In Section 3, we propose the architecture of the agent for playing 2D

shooting games. All the hyper-parameters that were used in our models are described in

detail. In Section 4, we compare the performance metrics of each RL algorithm in various

aspects. The paper concludes with a short discussion.

2. Related Works

2.1. OpenAI Gym

OpenAI Gym is an Atari emulator for comparing various kinds of RL algorithms [6].

Since it gives you standardized set of environments for play Atari games, users can write

a general algorithm and compare it from other algorithms. When the agent takes an action

in the environment, it receives a state, reward, and other information related to the current

step. The initial state of the environment is randomly chosen, and the agent interacts with

the environment until it reaches a terminal state. The goal of the agent is maximizing the

expectation of total reward per episode and achieving a high level of performance in as

few episodes as possible. We used OpenAI Gym as a standard environment for our agent

just as other RL researches did [7,8,9].

2.2. Deep Q-Networks (DQN)

[3] suggested DQN which trains CNN from high-dimensional sensory input using RL.

An agent uses the network to maximize the expected return Rt

0

T
k

t t k

k

R r 



 (1)

from time step t where γ is a discount factor and T is the time at which the game

terminates and rt is a reward from a state st. The output of the network is a Q-value

function

 *(,) max | , ,t t tQ s a R s s a a


    , (2)

which estimates maximum Rt when observing a state s and taking an action a where π

is a policy mapping sequences to actions. The agent selects an action at that maximize a

Q-value to interact with an unknown environment. The agent updates the network using

following loss function:

  
2

1() max , | (, |)i i t t i t t i
a

L r Q s a Q s a   


 
     

 (3)

where
i is a Q-Network parameter and

i is a target network parameter at iteration i.

i is only updated with
i every C steps while

i is updated every time step.

2.3. Asynchronous Advantage Actor-Critic (A3C)

While DQN uses a single agent that interacts with a single environment, [4] uses

multiple agents which each have their own copy of the environment. Each agent selects an

action at according to its policy π at each time step t. The value function of state st under

policy π is defined as

 () |t t tV s R s  , (4)

which is the expected return for following policy π from state st. To determine how

good it is to take an action at in a state st compared to average, an advantage function

(,) (,) ()t t t t tA s a Q s a V s    (5)

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

Copyright © 2018 SERSC Australia 195

INPUT

4@210x160x3

84x84x4

CONV, ReLU

32@8x8x4 filters
CONV, ReLU

64@4x4x32 filters

20x20x32

9x9x64

CONV, ReLU

64@3x3x64 filters

7x7x64

512

Flatten,

FC, ReLU

6

FC

Q-Value

(DQN)

Value

(A3C)Linear

Policy

(A3C)

512

Flatten,

LSTM, ReLU

6

FC

Value

(A3C+LSTM)

Policy

(A3C+LSTM)

Linear

Figure 1. Illustration of the Network Architecture of Our Models We Used for
Our Experiments

is used where a state-action value function is

1 1(,) [() | ,]t t t t t tQ s a r V s s a    . (6)

Also, to express how good the policy π is, an objective function

() [()]oJ V s  (7)

is defined. The gradient of the objective function J(θ) is approximately derived as

() log (|) (,)t t t tJ a s A s a       , (8)

which can be used to optimize the objective function J(θ).

3. Proposed Architectures and Training Method

We now present a deep RL agent for playing 2D shooting game. The purpose of this

agent is adopting various RL algorithms in a modular manner and comparing their

performance in multiple aspects. In this paper, we compare three RL algorithms which are

DQN, A3C, and A3C combined with LSTM (A3C+LSTM). Using the recurrent neural

network, particularly the LSTM network, is helpful to remember information for an

arbitrary long amount of time. To provide a common environment to the agent, we used

OpenAI Gym.

Figure 1 shows the architecture of our model that the agent uses. To reduce input

dimensionality, raw input is preprocessed as follows: A 210×160 pixel image with RGB

color is converted to a gray-scale and down-sampled and cropped to a 84×84 image. Also,

four subsequent frames are stacked up together to produce vectorized input to the network.

The model consists of 3 convolutional layers, 3 fully-connected (FC) layers and 1

recurrent layer. All convolutional layers are shared, whereas 2 FC layers are used for

DQN and A3C, and the other is used for A3C+LSTM. The number of filters in the three

convolutional layers are 32 (8×8, with stride 4), 64(4×4, with stride 2), 64(3×3, with

stride 1) and the Rectified Linear Unit (ReLU) is used for an activation function. The final

hidden layer of DQN and A3C is FC with 512 cells, whereas the final layer of

A3C+LSTM is LSTM with 512 cells. Both output layers are FCs with 6 outputs for each

action.

In a shooting game, rewards are normally delayed upon a specific action, which makes

it difficult for the agent to learn which action is responsible for what reward. Also, the

scale of scores varies depending on the types of enemies hit. To limit the scale of the error

derivatives, we fixed all positive rewards to be 1 while leaving 0 reward unchanged. This

can improve the performance of our agent since it does not differentiate between various

rewards.

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

196 Copyright © 2018 SERSC Australia

If the agent uses consecutive samples while learning, this leads to strong correlations

between samples, resulting network parameters get stuck in a poor local minimum, or

even diverge. The agent breaks the correlations by random sampling. To explore a wide

range of states in the domain space, the agent uses ɛ-greedy strategy that selects a random

action with a probability ɛ and follows the optimal policy with a probability 1-ɛ. The

value of ɛ decreases linearly from 0.5 to 0.1 until 70,000 time steps. Also, when using

DQN, the replay memory and the separated target Q-network are used for breaking the

correlation. The agent stores 500,000 most recent frames in the replay memory, and

randomly samples a minibatch of size 32 from the replay memory. The agent uses this

minibatch to train the DQN parameters and updates the target network every 10,000 step.

Whereas, when using A3C or A3C+LSTM, the agent uses 8 threads interacting with their

own copies of the environment. To prevent overwriting each thread’s update, the samples

are accumulated over 8 time steps before they are used for updating network parameters.

Also, to make the exploration policies differ, each thread uses ɛ-greedy strategy when

selecting an action.

Figure 2. Learning Speed Comparison for DQN, A3C and A3C+LSTM on
Space Invaders

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

Copyright © 2018 SERSC Australia 197

4. Experiments

We have performed experiments on Space Invaders from OpenAI Gym to compare the

performance of DQN, A3C and A3C+LSTM. Our models were implemented using Keras

[10] with Tensorflow backend and trained on a NVIDIA GTX 1070. All networks were

optimized using the RMSProp optimizer [11] with the learning rate 1×10-4 until the

maximum number of episodes reached, which was 74,000. The discount factor γ was set

to 0.99.

Figure 2 compares the learning speed of the three algorithms using the total reward the

agent collects in an episode. When we compared the reward, it was not clipped, which

means it is same with the total score of the game. The plot on the above shows the

average value of the reward over 738 episodes interval. After 15,000 episodes, the reward

in DQN did not increased anymore, while the rewards in A3C and A3C+LSTM kept

increasing. The reward in A3C was noisy compared to the one in A3C+LSTM. The plot

on the below shows the linear trendline of the reward. It is clear that A3C+LSTM learned

faster than others, while DQN was the slowest. Table 1 shows the actual average score

Figure 3. Plot of the Performance Metrics Obtained by DQN on Space
Invaders

Table 1. Score Comparison for DQN, A3C and A3C+LSTM

Algorithm Average Score Max Score

DQN 390.1 3058.5

A3C 479.4 2884.5

A3C+LSTM 557.3 3286.5

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

198 Copyright © 2018 SERSC Australia

and the average of the top 10 highest scores of the game over the entire episodes. Again,

A3C+LSTM gained the top average score and the top maximum score in three algorithms.

Figure 3 compares the performance metrics obtained by DQN while training. The plot

on the above compares the reward with the Q-value as a function of episode. Two metrics

were averaged over 738 episodes interval. The Q-value function, which estimates how

much discounted reward the agent can get by following its policy, was more stable than

the reward plot. The plot of two metrics showed similar curves over the entire episodes.

The plot on the below compares the mean absolute error (MAE) with the loss as a

function of the time step while optimizing network. Two metrics were averaged over

22105 time steps interval. We could not observe any divergence issues and their plots

were similar smooth curves.

Figure 4. Plot of the Value and the Reward Obtained by A3C and A3C+LSTM
on Space Invaders

Figure 4 compares the output of the value function with the reward obtained by A3C

and A3C+LSTM while training. Both metrics were averaged over 738 episodes interval.

The plots on the above compares them in A3C. Both plots were noisy but showed very

similar curves. When we plotted the reward, the plot of the value followed similar curves

after a few episodes later. The plot on the below compares them in A3C+LSTM. Both

plots were more stable than that of A3C. Also, both values of the metrics grew faster than

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

Copyright © 2018 SERSC Australia 199

that of A3C, but we could not observe any similarity between the reward and the value

just as in A3C.

5. Conclusion

In this paper, we have presented a complete architecture of the RL agent for playing

2D shooting games. By using the agent, we could compare the performance of recent

successful RL algorithms in various aspects. Experiment results showed the correlation

between the performance metrics, such as the reward and Q-value in DQN, and MAE and

the loss in DQN, and the value and the reward in A3C and A3C+LSTM. The experiment

also showed that A3C+LSTM was fastest in terms of the learning speed and achieved a

highest score among other algorithms.

For future work, we plan to expand the scope of adopted RL algorithms using various

hyper-parameters on wide-range of environment. By doing this, we can make a new

algorithm that combines advantages of the existing algorithms.

References

[1] J.N. Tsitsiklis and B.V. Roy, “An analysis of temporal-difference learning with function approximation”,

IEEE Transactions on Automatic Control, vol. 42, no. 5, (1997), pp. 674–690.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller,

“Playing atari with deep reinforcement learning”, Proceedings of the Neural Information Processing

Systems (NIPS) Deep Learning Workshop, (2013).

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller,

A.K. Fidjeland, G. Ostrovski and S. Petersen, “Human-level control through deep reinforcement

learning”, Nature, vol. 518, no. 7540, (2015), pp. 529-533.

[4] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and K. Kavukcuoglu,

“Asynchronous methods for deep reinforcement learning”, Proceedings of the International Conference

on Machine Learning (ICML), (2016), pp. 1928-1937.

[5] F.A. Gers, J. Schmidhuber and F. Cummins, “Learning to forget: continual prediction with LSTM”,

Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN), (1999), pp.

850-855.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, “OpenAI

Gym”, arXiv preprint arXiv:1606.01540 (2016).

[7] Y. Hou, L. Liu, Q. Wei, X. Xu and C. Chen, “A novel DDPG method with prioritized experience

replay”, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC),

(2017), pp. 316-321.

[8] A. Rajeswaran, K. Lowrey, E.V. Todorov and S.M. Kakade, “Towards Generalization and Simplicity in

Continuous Control”, Proceedings of the Advances in Neural Information Processing Systems (NIPS),

(2017), pp. 6553-6564.

[9] D. Hein, S. Depeweg, M. Tokic, S. Udluft, A. Hentschel, T.A. Runkler and V. Sterzing, “A benchmark

environment motivated by industrial control problems”, Proceedings of the IEEE Symposium Series on

Computational Intelligence (SSCI), (2017), pp. 1-8.

[10] K. Choi, D. Joo and J. Kim, “Kapre: On-GPU Audio Preprocessing Layers for a Quick Implementation

of Deep Neural Network Models with Keras”, Proceedings of the International Conference on Machine

Learning (ICML) machine learning for music discovery, (2017).

[11] T. Le, J. Kim and H. Kim, “An Effective Intrusion Detection Classifier Using Long Short-Term

Memory with Gradient Descent Optimization”, Proceedings of the International Conference on Platform

Technology and Service, (2017).

Authors

Dongcheul Lee, he has been an assistant professor in the

Department of Multimedia at Hannam University, Korea since

2012. He received his B.S. and M.S. degrees in Computer Science

and Engineering from POSTECH, Korea in 2002 and 2004,

respectively, and a Ph.D. degree in Electronics and Computer

Engineering from Hanyang University, Korea in 2012.

International Journal of Control and Automation

Vol. 11, No. 3 (2018)

200 Copyright © 2018 SERSC Australia

Janise McNair, she is an Associate Professor in the Department

of Electrical & Computer Engineering at the University of Florida,

where she leads the Wireless And Mobile Systems Laboratory. She

earned her B.S. and M.S. in electrical engineering from the

University of Texas at Austin in 1991 and 1993, respectively, and

her Ph.D. in electrical and computer engineering from the Georgia

Institute of Technology in 2000.

