
International Journal of Database Theory and Application

Vol.7, No.1 (2014), pp.37-48

http://dx.doi.org/10.14257/ijdta.2014.7.1.04

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Enhancing Fault Tolerance based on Hadoop Cluster

Peng Hu
1

and Wei Dai
2

1
School of Mathematics and Physics, Hubei Polytechnic University,

Huangshi 435003, Hubei, P.R.China
2
School of Economics and Management, Hubei Polytechnic University,

Huangshi 435003, Hubei, P.R.China

1
penghuit@163.com,

 2
dweisky@163.com (Corresponding Author)

Abstract

Failures happen for large scale distributed systems such as Hadoop clusters. Native

Hadoop provides basic support for failure tolerance. For example, data blocks are replicated

over several HDFS nodes, and Map or Reduce tasks would be re-executed if they fail.

However, simply re-processing the whole task decreases the efficiency of job execution,

especially when the task is almost done. To this end, we propose a fault tolerance mechanism

to detect and then recover from failures. Specifically, instead of simply using a timeout

configuration, we design a trust based method to detect failures in a fast way. Then, a

checkpoint based algorithm is applied to perform data recovery. Our experiments shows that

our method exhibits good performance and is proved to be efficient.

Keywords: Fault tolerance, Hadoop, Checkpoint

1. Introduction

With the increasing development of cloud computing [1, 2] and the big data era [3-5], the

distributed system and architecture for high performance computing [6] have been more and

more complicated. Even though the designers pay much attention to the reliability of the

application, the probability of failures for such a complicated system remains high. Therefore,

in order to make it more efficient for distributed systems applications, it is necessarily urgent

to enhance fault tolerance in distributed systems.

MapReduce programming model [7] provides more simple way to achieve large scale

capability for distributed and parallel systems. As an open source implementation of

MapReduce, Hadoop [8] has already been successfully applied in many applications such as

search engine [9, 10], text processing [11], machine translation [12, 13] and so on.

Hadoop has two major components: HDFS (Hadoop Distributed File Systems) [14] and

Hadoop MapReduce. Files are split into equal size of data blocks and replicated on multiple

HDFS nodes. Also, jobs are divided into several tasks including Map tasks and Reduce tasks,

and then are assigned to several task nodes for processing. Both HDFS and MapReduce

employ a master/slave architecture, where the master is in charge of management and

scheduling, and the slaves are responsible for data storage and task processing.

Indeed, Hadoop provides some fault tolerance mechanisms through both HDFS and

MapReduce. First, HDFS provides storage layer of fault tolerance by replication. That is,

HDFS keeps multiple replicas of each data block in several different nodes, so that if

any one node is down, data could still be restored from other replicas. Second, Hadoop

MapReduce provides job level fault tolerance. That is, if a Map or Reduce task fails, the

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

38 Copyright ⓒ 2014 SERSC

scheduler would re-assign the task to another node. Or, if a node fails, all the Map and

Reduce tasks on that node would be re-scheduled to another node for re-execution.

However, this simple redo solution increases the computation cost a lot. For example,

suppose the total execution time of task i on node j is
,i j , and task i

encounters a failure at time t . If
,i j t  , the simple solution of re-scheduling and

re-processing would be fine. Otherwise, a large number of computations that have been

completed will be repeated elsewhere, especially when
,i j is big. Intuitively, we need

to find a better solution to deal with this kind of failures instead of completely redo the whole

task.

To this end, in this paper we propose to study on a fault tolerance mechanism for more

efficient job scheduling, especially when the workload of each task is high, in which case the

original Hadoop solution of re-processing the whole task would be quite inefficient.

Specifically, we propose a trust based checkpoint algorithm to enhance fault tolerance of

Hadoop. First, instead of simply use a timeout based rule to detect failure, we design a trust

based method. The basic idea is to assign a trust value to each node, and if a task receive a

fetch error from that node, the trust value would be reduced. Second, once we have detected a

failure, we employ a checkpoint mechanism for recovery. Our checkpoint algorithm is

coordinated by a centralized master node and the communication is made between replica

nodes of specific data block. At the end of this study, our empirical experiments prove the

efficiency of our proposed method.

The remain of this paper is organized as follows. Section 2 provides some preliminaries.

Related work is discussed in Section 3. Then our proposed fault tolerant mechanism is

proposed in Section 4. Empirical experiments are conducted in Section 5. Finally, the paper is

concluded in Section 6.

2. Preliminaries

In this section, we will briefly introduce some background about Hadoop.

Figure 1. Architecture of HDFS

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 39

As an open source implementation of MapReduce, Hadoop [8] has two major components:

HDFS (Hadoop Distributed File Systems) [14] and Hadoop MapReduce. The architecture of

HDFS is illustrated in Figure 1, where NameNode is the master node of HDFS handling

metadata, and DataNode is slave node with data storage in terms of blocks. Namenode holds

metadata about the information of all DataNodes and is responsible of coordination and node

management. Each data block is stored on one DataNode, and replicated to several other

DataNodes. Every operation of writing data would update all the replicas of data blocks

sooner or later. In this way, if any one of the data block is missing because of task failure or

node failure, data can still be accessed from replicas on other DataNodes and even rebuilt

from the replicas on other healthy nodes.

Figure 2 shows the process flow of MapReduce, which can be summarized as follows.

First, the input data is partitioned into splits with appropriate size; and then Map procedure

does the process and produces intermediate results, which are ready to be passed to a Reduce

node by certain partition function; Later, after data sorting and shuffling, the Reduce

procedure performs some aggregation on specific keys. The master node of Hadoop

MapReduce is called JobTracker, which is in charge of managing and scheduling several

tasks, and the slave node is called TaskTracker, where Map and Reduce procedures are

actually performed.

A typical deployment of Hadoop is to assign HDFS node and MapReduce node on the

same physical computer for the consideration of localization and moving computation to data

[15]. As you will see in Section 4, we apply this deployment in our experiments.

Figure 2. Description of MapReduce Programming Model

There are two ways to ensure the proper execution of the jobs. First, if a Map or Reduce

task fails, the scheduler would re-assign the task to another node. Second, if a node fails, all

the Map and Reduce tasks on that node would be re-scheduled to another node for

re-execution. However, this simple redo solution increases the computation a lot, because the

failed task might be a small step away from the completion. Therefore, finding a solution to

deal with the failures instead of completely redo the whole tasks is in need.

3. Related Work

Aside from the native support of fault tolerance in Hadoop as mentioned earlier, there are

some other efforts along this line.

Finding slow tasks that are lagging the whole job execution can help to ensure fault

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

40 Copyright ⓒ 2014 SERSC

tolerance. Matei Zaharia et al., [16] discovered that the prediction mechanism might increase

the total execution time in that the heterogeneous nature of a cluster with heterogeneous

nodes. The reason behind is there is a fundamental assumption of Hadoop that the computing

capability of computing nodes is equivalent. To this end, the authors proposed a scheduling

strategy based on LATE (Longest Approximate Time to End) which employs the longest

remaining time of each task as a measure for scheduling. Quan Chen et al., [17, 18] presented

to collect history data of each node along with the performance records, to assist the

assignment of Map and Reduce tasks. However, unlike above methods, which try to predict

the execution time of each node or task or the whole job and then help to avoid failures, in

this paper, we propose solutions to detect and handle failures.

There are some efforts on avoiding Single Point Of Failure (SPOF) as well. The role of

JobTracker in Hadoop MapReduce is significant in coordination, monitoring and job

scheduling. Francesco Salbaroli [19] proposed to employ a Master-Slave architecture, where

the master JobTracker provides services such as data access, and the slave JobTracker is

responsible for synchronizing data with master JobTracker. In this case, if the master

JobTracker is down, other slaves JobTracker would vote for a new master JobTracker.

Besides, NameNode in HDFS can also be the single point of failure. Borthakur [20] presented

a mechanism called AvatarNode to achieve high scalability, and Wang Feng et al., [21]

proposed to replicate metadata over other nodes. Unlike these researches, in our study, we

focus on the failure during job execution. In fact, our method can be easily extended with the

SPOF solutions from a big picture, which could be a future work.

4. Trust Based Checkpoint Algorithm

4.1 Trust Based Failure Detection

Typically, the process of MapReduce in Hadoop is composed of three stages: (1) after Map

task finishes, the immediate results are saved to the local storage; (2) in shuffle stage, the

local results are transferred to the Reduce task; (3) after the process of Reduce task, the

results are saved in HDFS. Note that if a node fails during the Reduce stage, all the other

Reduce tasks on other nodes will receive a fetch error, because the data shuffled from

multiple Map tasks is missing. The original solution in Hadoop to detect the failure node is:

given a pre-defined timeout parameter, if a node has no response after a specified timeout

period, then that node is asserted to be dead.

However, complete dependence on timeout is an inefficient design, and the setting of

timeout parameter is very important. For example, if the timeout is too small, and the

execution time of a task happens to be longer than the timeout value, then that node would be

reported as a failure while in fact it is just a lag processing task. Oppositely, if the timeout is

too large, and there is one node fails much earlier than the pre-defined timeout moment, then

the whole process would be waiting while the failure should be detected earlier.

Therefore, in this section, we propose a trust based failure detection method. The general

idea is to make use of the fetch error that Reduce tasks receive when they attempt to get

immediate data from other nodes. We assume that if multiple fetch errors are encountered,

that node is reported as a failure.

Suppose the set of tasks },...,,{ 21 NtttT  , and the set of processors (or nodes)

},...,,{ 21 MpppP  , where NM , are the number of nodes and tasks respectively. Every

processor is associated with a trust value indicating the reliability of that node. The

corresponding trust value for P is },...,,{ 21 MrrrR  , where Mjrj ,...,2,1,10  , and

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 41

initialized as 1 at the beginning. Note that the trust values will always be equal for multiple

processors on a single node. If a Reduce task tries to get data from a Map task node jp , and

receives a fetch error, the corresponding trust value will be reset as jr , where  is the

penalty value. Let  as the threshold of trust. If jr , node j would be detected as a

failure. The process of failure detection is described in Algorithm 1.

4.2 Checkpoint Based Recovery

Once a node is reported as a failure, the next step is to recovery. To achieve this, we

employ a checkpoint based recovery strategy [22]. Checkpoint strategy can not only help to

restore the system to a state before failures, but also avoid the completely re-processing, and

therefore reduces the workload of data recovery. In fact, the checkpoints are set during the

process of job processing, which is overlapped with the failure detection process. That is,

while we are monitoring the trust value of nodes, we need to preserve the checkpoint

information as well. The difference is that the former is used to report failures, and the latter

is for data recovery from failures.

Figure 3. Algorithm Description of Trust Based Failure Detection

On Hadoop cluster, data is replicated over several nodes. Suppose each data block has r

replica copies rccc ,...,, 21 , and each kc is processed by jp . Note that we assume the

deployment of our Hadoop cluster is localize the data storage and computation, which means

that if jp processes kc then data kc is stored on node j . The HDFS NameNode

maintains a metadata about the locations and assignments of replicas.

On node jp , the data structures include: (1) current sequence number of checkpoint

jCN , which is an integer increased by 1 if there is a checkpoint set on jp , otherwise

0jCN ; (2) current state jST , that is NORMAL or CK (checkpoint) decided by if there

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

42 Copyright ⓒ 2014 SERSC

is any checkpoint settings; (3) the set of messages or logs in local data storage jD , which is

used to restore data; (4) state of other replicas jRST , which is actually a list of replica kc

and current state kST pairs. Note that all the replicas of the same data block share one single

sequence counter of jCN to keep synchronized.

The communication between nodes is achieved by sending and receiving messages. Denote

jSM as the set of messages sent by jp , and jRM as the set of messages received by jp .

Each message m is composed of jCN , jST and jRST .

Suppose jp has a local checkpoint jCN . It will sent a message to the master node for

coordination with the format of),(CKCN j . Since the master node maintains the metadata

of the locations and states of replicas, it will send messages to other replicas and update the

checkpoint setting, shown as Lines 5-14 in Algorithm 2.

Figure 4. Algorithm Description of Setting Checkpoint

If a node pj is reported as a failure as described earlier, the recovery is processed as shown

in Algorithm 3. First, information of other replicas is obtained from the master. Then, using

the checkpoint data stored at each node, and also with the help of master’s coordination,

another replica is rebuilt on another live node.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 43

Figure 5. Algorithm Description of Failure Recovery

5. Experiments

In order to evaluate our fault tolerant mechanism, we first need to set up a Hadoop cluster.

We have a Hadoop cluster deployed on 4 PCs with 2.11 GHz dual-core CPU, 1G RAM and

200G hard disk. According to the best practices of Hadoop [23], we assign twice the number

of Map tasks and the same number of Reduce tasks as the number of cores on each PC. That

is, we have 4 Map tasks and 2 Reduce tasks on each physical node. On each physical node,

both a HDFS and MapReduce nodes are deployed. We let one of them as HDFS NameNode

and MapReduce JobTracker (i.e., master), and the remaining nodes act as HDFS DataNode

and MapReduce TaskTracker (i.e., slave).

In our study, we choose two different types of jobs, i.e., java sort and monsterQuery [24].

The former job is a small one, which consists of 10 Map tasks and 15 Reduce tasks, while the

latter one is large, which is composed of 80 Map tasks and 170 Reduce tasks. In our

experiments, we will evaluate the execution time of above two jobs.

Figure 6. Evaluation of Failure Detection

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

44 Copyright ⓒ 2014 SERSC

First, we evaluate the time cost of detecting failure. Note that the timeout settings in the

native Hadoop is set to 10 minutes. We compare the execution time of detecting failure for

both java sort and monsterQuery jobs, as shown in Figure 6. First, for small job java sort, the

time cost of detecting failure for native Hadoop is 10 minutes, because only the timeout

condition is satisfied the system would be aware of the task failure. On contrary, it just takes

less than 1 minute for our method to report the failure. Second, for large job monsterQuery,

the time cost of native Hadoop is also 10 minutes. The reason might be that even though the

execution time of job monsterQuery is much longer than that of java sort, it is still shorter

than the 10 minutes timeout setting. As you can see, our method outperforms native Hadoop

in detecting failures for both small and large jobs.

Figure 7. Evaluation of Checkpoint Cost

Second, we evaluate the time cost of setting checkpoints. We compare our checkpoint

algorithm with two popular checkpoint algorithms: traditional two-phase checkpoint

algorithm [25] and distributed snapshot algorithm [26]. As shown in Figure 7, which gives the

average cost of checkpoints with different numbers of processors. We can observe that our

checkpoint algorithm is better than the other two. The reasons include: (1) in two-phase

checkpoint algorithm, there are three synchronization steps which would block the whole

process; and (2) in distributed snapshot algorithm, although no block operations, the

communication cost between processors increases up to approximately 2()O n .

Third, we evaluate the recovery time with various number of processors. Figure 8 provides

the average cost of recovery with different numbers of processors when there are failures. The

cost includes both the communication cost and the replication cost. The axis denotes the

number of processors the failure node needs to notify, which is typically depended on the dfs.

replication in Hadoop settings file for HDFS configuration. We can see that if a failure is

detected, the more replicas we have, the more cost it would take for recovery.

Last, we evaluate the total execution time for both the java sort and monster Query jobs

as well. As shown in Figure 9, we have the following observations. First, for small job java

sort, the execution time without any failure is small, while the large job monster Query

costs more than 9 times of processing. Second, as discussed earlier, the time cost of detecting

failure of native Hadoop is determined by the timeout setting, which is set to 10 minutes in

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 45

our experiment. Therefore, the execution time of both jobs in native Hadoop with failure is

more than 10 minutes. Third, for our method, the execution time with failure for both jobs is

slightly longer than the situation of without any failures. The extra cost is caused by the

checkpoint mechanism and communication between processors.

Figure 8. Evaluation of Recovery Cost

Figure 9. Evaluation of Total Execution Time

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

46 Copyright ⓒ 2014 SERSC

6. Conclusions

In this paper we propose a fault tolerance mechanism based on Hadoop. The only support

of fault tolerance on native Hadoop is replication on HDFS and re-execution of failed Map or

Reduce tasks. However, this increases the cost by re-execution the whole task no matter how

far it proceeds. The situation would be worse if a long-last task fails in a large job.

To this end, we propose to first detect failure at a early stage through a trust based method,

and then use a checkpoint algorithm for failure recovery. First, instead of simply applying a

timeout solution, we assign a trust value to each node, which decreases if a Reduce task gets a

fetch error from it. In this way, we dramatically reduces the cost of failure detection.

Second, for our checkpoint algorithm, we employ a non-block method by sending and

receiving messages with sequence numbers of specific replica of data blocks. And the data is

written to the local storage first, and then combined at the centralized master. Besides,

according the metadata information on master, it can choose an appropriate location for

rebuilding the missing data block using checkpoint data from other replicas.

Besides, we conduct extensive experiments on a Hadoop cluster, and compare our proposed

method with the native configuration of Hadoop. Our empirical results indicate that proposed

method exhibits good performance and efficiency.

Acknowledgements

This study has been supported by Humanities and Social Science Youth Fund Project of Ministry of

Education (No.13YJCZH028), Hubei Polytechnic University Innovative Talents Project (No.12xjz20C)

and Hubei Polytechnic University Youth Project (No.13xjz07Q).

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica and M. Zaharia, “A view of cloud computing”, Communications of the ACM, vol. 53, no. 4, (2010), pp.

50-58.

[2] P. Mell and T. Grance, “The NIST definition of cloud computing (draft)”, NIST special publication 800-145,

(2011).

[3] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R. Kania, M. Schaeffer, S. S.

Pierre, S. Twigger, O. White and S. Y. Rhee, “Big data: The future of biocuration”, Nature, vol. 455, no. 7209,

(2008), pp. 47-50.

[4] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins and N. Kruschwitz, “Big data, analytics and the path from

insights to value”, MIT Sloan Management Review, vol. 52, no. 2, (2011), pp. 21-31.

[5] P. Zikopoulos and C. Eaton, “Understanding big data: Analytics for enterprise class hadoop and streaming

data”, McGraw-Hill Osborne Media, (2011).

[6] K. Dowd, C. R. Severance and M. K. Loukides, “High performance computing”, vol. 2. O'Reilly, (1998).

[7] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, Communications of

the ACM, vol. 51, no. 1, (2008), pp. 107-113.

[8] T. White, “Hadoop: the definitive guide”, O'Reilly, (2012).

[9] B. Pratt, J. J. Howbert, N. I. Tasman and E. J. Nilsson, “MR-tandem: parallel X! tandem using hadoop

MapReduce on amazon Web services”, Bioinformatics, vol. 28, no. 1, (2012), pp. 136-137.

[10] S. Goel, J.M. Hofman, S. Lahaie, D. M. Pennock and D. J. Watts, “Predicting consumer behavior with Web

search”, Proceedings of the National Academy of Sciences, vol. 107, no. 41, (2010), pp. 17486-17490.

[11] J. Lin and C. Dyer, “Data-intensive text processing with MapReduce”, Synthesis Lectures on Human

Language Technologies, vol. 3, no. 1, (2010), pp. 1-177.

[12] C. Dyer, A. Cordova, A. Mont and J. Lin, “Fast, easy, and cheap: Construction of statistical machine

translation models with MapReduce”, Proceedings of the Third Workshop on Statistical Machine Translation,

Association for Computational Linguistics, (2008), pp. 199-207.

[13] D. Vilar, D. Stein, M. Huck and H. Ney, “Jane: Open source hierarchical translation, extended with reordering

and lexicon models”, Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and Metrics

MATR, Association for Computational Linguistics, (2010), pp. 268-276.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 47

[14] D. Borthakur, “HDFS architecture guide. Hadoop Apache Project”, http://hadoop.apache.

org/common/docs/current/hdfs_design.pdf, (2008).

[15] L. Pan, L. F. Bic and M. B. Dillencourt, “Distributed sequential computing using mobile code: Moving

computation to data”, IEEE International Conference on Parallel Processing, (2001), pp. 77-84.

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz and I. Stoica, “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI, vol. 8, no. 4, (2008), pp. 7.

[17] Q. Chen, D. Zhang, M. Guo, Q. Deng and S. Guo, “Samr: A self-adaptive mapreduce scheduling algorithm in

heterogeneous environment”, IEEE 10th International Conference on Computer and Information Technology,

IEEE, (2010), pp. 2736-2743.

[18] H. Lin, X. Ma, J. Archuleta, W. C. Feng, M. Gardner and Z. Zhang, “Moon: Mapreduce on opportunistic

environments”, Proceedings of the 19th ACM International Symposium on High Performance Distributed

Computing, ACM, (2010), pp. 95-106.

[19] K. Hwang, J. J. Dongarra and G. C. Fox, “Fault tolerant Hadoop Job Tracker: Apache Hadoop”, Distributed

and Cloud Computing, Elsevier/Morgan Kaufmann, (2012).

[20] D. Borthakur, “Hadoop avatarnode high availability”, Facebook, http://hadoopblog.blogspot.

com/2010/02/hadoop-namenode-high-availability.html, (2010).

[21] F. Wang, J. Qiu, J. Yang, B. Dong, X. H. Li and Y. Li, “Hadoop high availability through metadata

replication”, Proceedings of the first international workshop on Cloud data management, ACM, (2009), pp.

37-44.

[22] J. S. Long, W. K. Fuchs and J. A. Abraham, “Forward Recovery Using Checkpointing in Parallel Systems”,

ICPP, no. 1, (1990).

[23] C. Lam, “Hadoop in action”, Manning Publications Co., (2010).

[24] P. Costa, M. Pasin, A. N. Bessani and M. Correia, “Byzantine fault-tolerant MapReduce: Faults are not just

crashes”, (CloudCom), IEEE Third International Conference on Cloud Computing Technology and Science,

(2011), pp. 32-39.

[25] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems”, IEEE Transactions on

Software Engineering, vol. 1, (1987), pp. 23-31.

[26] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A survey of rollback-recovery protocols in

message-passing systems”, ACM Computing Surveys (CSUR), vol. 34, no. 3, (2002), pp. 375-408.

Authors

Peng Hu. He received his B.S. in Mathematics (2003) from Hubei

Normal University and M.Sc. in Information Sciences (2010) from Hubei

University. Now he is full researcher of informatics at Mathematics and

Physics Department, Hubei Polytechnic University. His current research

interests include different aspects of Artificial Intelligence and

Information Coding.

 Wei Dai. He received his M.S.E. in Computer Science and

Technology (2006) and PhD in Computer Application Technology

(2012) from Wuhan University of Technology. Now he is full

researcher of Economics and Management Department, Hubei

Polytechnic University. His current research interests include

different aspects of Intelligence Computing and Information

Systems.

http://hadoopblog/

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

48 Copyright ⓒ 2014 SERSC

