
International Journal of Database Theory and Application

Vol.8, No.3 (2015), pp.57-68

http://dx.doi.org/10.14257/ijdta.2015.8.3.06

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

An Efficient Parallel Top-k Similarity Join for Massive
Multidimensional Data Using Spark

Dehua Chen
1
, Changgan Shen

2
, Jieying Feng

3
 and Jiajin Le

Computer Science and Technology Academy, Donghua University, Shanghai,
China

chendehua@dhu.edu.cn
1
, dhshenchanggan@163.com

2

Abstract

Top-k similarity join has been used in a wide range of applications that require

calculating the most top-k similar pairs of data records in a given database. However, the

time performance will be a challenging problem, as an increasing trend of applications

that need to process massive data. Obviously, finding the top-k pairs in such vast amounts

of data with traditional methods is awkward.

In this paper, we propose the RDD-based algorithm to perform the top-k similarity join

for massive multidimensional data over a large cluster built with commodity machines

using Spark. The RDD-based algorithm consists of four steps, which loads a set of

multidimensional records stored in HDFS and finally output an ordered list of top-k

closest pairs into HDFS. Firstly, we develop an efficient distance function based on

LSH(Locality Sensitive Hashing) to improve the efficiency in pairwise similarity

comparison. Secondly, to minimize the amount of data during the RDD running-time, we

split conceptually all pairs of LSH signatures into partitions. Moreover, we exploit a

serial computation strategy to calculate all top-k closest pairs in parallel. Finally, all the

local top-k pairs sorted by their Hamming distances will contribute to the global top-k

pairs. In this paper, the performance evaluation between Spark and Hadoop confirms the

effectiveness and scalability of our RDD-based algorithm.

Keywords: Massive multidimensional data; top-k similarity join; Spark; Resilient

Distributed Datasets; Hadoop

1. Introduction

Top-k similarity join, such query plays an important role in a wide range of applications

including time series analysis, CAD, similarity search, social networks and link prediction，
etc. In these domains, numerous real-world information can be presented as

multidimensional data which contain a huge amount of useful and valuable information.

For instance, assume that an IT company plans to recruit one project manager and one

product manager. However, how to choose the best two is a hard work. Recently, a

breakthrough pointis to analyzing applicants’ professional social networks, like LinkeIn[1],

a good and trendy way for employers to seek candidates. In paper [2], we know that there is

an interesting observation in sociology: the more similar two individuals are, the greater the

trust between them is. Thus, we expect that the project manager and the product manager

have good trusting relationships. Plato observed in Phaedrus that “similarity begets

friendship” [3]. Therefore, analyzing all the candidates’ social network, we could find the

top-1 pair of managers who are similar to each other if they have many common friends.

Finding top-k similar pairs in large multidimensional databases is a formidable

problem as the vast amounts of multidimensional data usually do not fit in the main

memory of one machine. Recently, many applications of big data analysis leverage cloud

computing technologies in order to efficiently deal with this amount of data. Spark[4], a

super-fast, open source large-scale data processing and advanced analytics engine in use at

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

58 Copyright ⓒ 2015 SERSC

Alibaba, Cloudera, Databricks, IBM, Intel, and Yahoo, among others, is a top-level

project of the Apache Software Foundation now. And its programming model, Resilient

Distributed Datasets (RDDs)[5], a distributed memory abstraction that lets programmers

performin-memory computations on large clusters in a fault-tolerant manner, provides a

restricted form of shared memory based on coarse-grained transformations. RDDprovides

numerous abstractions for accessing a cluster’s computational resources and efficiently

leverage distributed memory. It can efficiently reuse intermediate results across multiple

computations and even 100x faster than Hadoop[6]MapReduce[7] in memory, or 10x

faster on disk[4].In this paper, we use RDD as the parallel data-processing framework to

calculate top-k similar pairs of multidimensional data records in large databases.

Motivated by these, in this paper, we develop a scalable parallelized algorithm for the

top-k similarity join over massive multidimensional data with LSH-based distance.

However, when the multidimensional data quantity becomes more and more, computing

the top-k similarity join on them immediately can be a big challenge. Our proposed

algorithm leverages the idea of parallel computation in RDD to complete two main tasks

before computing top-k similar pairs. The first task is to leverage an RDD to compute LSH

signature for each point record in a parallel way. The second one is to split conceptually

all pairs of LSH signatures into partitions such that every pair appears in a single partition

only. After all pair partitioning, we can correctly find the top-k closest pairs by computing

the top-k closest pairs in each partition separately. To improve the efficiency in finding

the local top-k closest pairs in each partition, we propose the divide-and-conquer

algorithm in traditional settings which will be used in each partition later when using the

RDD framework. Based on all the top-k closest pairs from all partitions, we can select the

final top-k closest ones. Even though we still compute overall Θ(n2) distance

computations, the execution times of the top-k closest pair algorithms using RDD will be

actually improved since Spark’s good architecture and outstanding performance.

2. Background

2.1. Locality-sensitive Hashing

Locality-sensitive Hashing(LSH) is a method of performing probabilistic dimension

reduction of high-dimensional data. The basic idea is that if two points are close together,

their projection remains close. So the similar points hashed are mapped to the same

buckets with high probability. Comparing with conventional hash functions, such as those

used in cryptography, LSH aims to maximize probability of "collision" of similar points

rather than avoid collisions.

Definition 1:ALSHfamily[8] ƒ is defined for a metric spaceMwith a thresholdr >
0andanapproximationfactorc > 1.Thefamilyƒis a family of functionsh: M → Swhich m

appoints from Мtoabuckets ∈ S. The LSH family satisfies the following conditions for

any two points p, q ∈ M, using a functionh ∈ ƒwhich is chosen uniformly at random:

If 𝑑(𝑝, 𝑞) ≤ 𝑟, then 𝑃𝑟ƒ [ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑃1 (1)

If 𝑑(𝑝, 𝑞) ≥ 𝑐𝑟, then 𝑃𝑟ƒ[ℎ(𝑞) = ℎ(𝑝)] ≤ 𝑃2 (2)

A family is interesting when it satisfies P1 > P2 . We call such a family

 ƒasƒ (c, r, P1, P2)-sensitive.

2.2. Hamming Distance

Named after Richard Hamming, paper[9] introduced the fundamental of the Hamming

distance. The hamming distance measures the number of positions at which the

corresponding symbols are different between two strings of equal length. It has been used

in some disciplines like information theory, cryptography, coding theory, and etc.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 59

Definition 2:Let H = {0,1}. The d-dimensional Hamming Space Hd consists of bit

strings of length d. Each point p ∈ Hd is a string p = (p1, p2, … , pd) of zero's and

one's. Given two points p, q ∈ Hd, the Hamming distance dH(p, q)between them is the

number of positions at which the corresponding strings differ, i.e.,dH(p, q) = |{i: pi ≠
qi}|.

2.3. Spark

Spark, a MapReduce-like cluster computing engine, extends the MapReduce model to

better support two common classes of analytics apps: (1) iterative algorithms (machine

learning, graphs); (2)interactive datamining. Unlike tranditional Map Reduce engines[10],

Spark has several different features:

 Unlike the two-stage MapReduce topology,it has an advanced DAG execution

engine that supports cyclic data flow.

 It provides an in-memory storage abstraction called ResilientDistributed Datasets

(RDDs) that offers over 80 high-level operators that make it easy to build parallel

apps, and automatically recover from failures.

 It optimizes the engine for low latency. Spark can efficientlymanage tasks on

clusters ofthousands of cores in sub-second, while engines like Hadoop incur a

latencyof 5 to 10 seconds to launch each task with the heart-beat mechanism.

 It also provides powerful integration with Hadoop ecosystem. Spark is easy to run

standalone or on EC2or Mesos[11], and can read from HDFS, HBase, Cassandra,

and any Hadoop data source.

In addition to those features above, Spark provides other difference features that

contribute to its superior performance.

2.4. Resilient Distributed Datasets (RDDs)

Resilient distributed datasets (RDDs), the main abstraction of Spark, represents

immutable, partitionedcollectionsthatcanbecreatedthroughvariousdata-paralleloperators

(e.g., map, group-by, join).Each RDD is a read-only, partitioned collection of records and

can only be created through deterministic operations on either (1) data in stable storage or

(2)other RDDs.

RDDs support two types of operations: transformations, which create a new dataset

from an existing one, and actions, which return a value to the driver program after running

a computation on the dataset. All transformations in Spark are lazy, in that they do not

compute their results right away. Instead, they just remember the transformations applied

to some base dataset (e.g. a file). The transformations are only computed when an action

requires a result to be returned to the driver program. This design enables Spark to run

more efficiently. Table 1 lists several RDD transformations and actions available in

Spark.

3. Problem Definition

Let M: {p1, p2, … , pn} be the d-dimensional dataset in which each point pi is

represented as < 𝑝i(1), pi(2), … , pi(d) > , and ƒ ∶ {h1, h2, … , hd} be the LSH function

family with the function hi(p) = ⌊(ai + bi) ω⁄ ⌋, where ai is a d-dimensional vector

whose coordinates are

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

60 Copyright ⓒ 2015 SERSC

Table 1. Several Transformations and Actions Available on RDDs in Spark

Transformations map(f : T)U) : RDD[T])RDD[U]

filter(f : T)Bool) : RDD[T])RDD[T]

Flat Map(f : T)Seq[U]) : RDD[T])RDD[U]

groupByKey() : RDD[(K, V)])RDD[(K, Seq[V])]

Reduce ByKey(f : (V;V))V) : RDD[(K, V)])RDD[(K, V)]

union() : (RDD[T];RDD[T]))RDD[T]

Partition By(p:

Partitioner[K]) :

RDD[(K, V)])RDD[(K, V)]

sort(c : Comparator[K]) : RDD[(K, V)])RDD[(K, V)]

Actions count() : RDD[T])Long

reduce(f : (T;T))T) : RDD[T])T

collect() : RDD[T])Seq[T]

picked uniformly at random from a normal distribution, and bi is a random variable

uniformly distributed in the range [0, ω]. SuposedH(p, q) is the Hamming distance.

We first define the LSH-based distance:

Definition 3: Given two pointsp1andp2, their LSH-based distance:

D(p1, p2) = 1 − [Prƒ(h(p1) = h(p2))]. (3)

Then, we give the definition of multidimensional signature:

Definition 4: For a given d-dimensional point p, its

signatureS(p): < h1(p), h2(p), … , hd(p) > is the concatenation of all the hash values of

h1(p), h2(p), … , hd(p).

Next is the fefinition of Hamming distance of d-signatures:

Definition 5: Given the d-signaturesS(p1) andS(p2) of two points p1 andp2, the

Hamming distance is

DH(S(p1), S(p2)) = ∑ dH(hi(p1), hi(p2))d
i=1 /d, (4)

where dH(hi(p1), hi(p2)) = {
1, hi(p1) ≠ hi(p2)
0, hi(p1) = hi(p2)

.

Proposition 1: For two pointsp1andp2, their LSH-based distance D(p1, p2)is equal to

the Hamming distance DH(S(p1), S(p2))of two signatures S(p1) andS(p2).

In summary, the computation of the LSH-based distance of multidimensional points

can be transformed into the computation of Hamming distance of multidimensional

points’ signatures. And computing the top-k similarity join with Hamming distance over

the multidimensional dataset, RTOP(k): {(pi(1), pj(1)), (pi(2), pj(2)), … (pi(k), pj(k))} ,

needs to satisfy the conditions as follows:

DH(S(pi(1)),S(pj(1)))≤DH(S(pi(2)),S(pj(2)))≤...≤DH(S(pi(k)), S(pj(k))) holds.

For each pair (pi(l),pj(l))∈ RTOP(k), we have i(l) < 𝑗(l)andi(l), j(l) ∈ R.

For each pair (i(l), j(l))withi(l) < 𝑗(l), (i(l), j(l)) ∉ RTOP(k)and (i(l), j(l)) ∈ R, we

have DH(S(pi(k)), S(pj(k)))≤DH(S(pi(l)),S(pj(l))).

4. RDD-based Algorithm

4.1. Algorithm Overview

As mentioned previously, computing the LSH-based distance of two multidimensional

points can actually be transformed into computing the Hamming distance of

theird-signatures. Considering that when the multidimensional data is massive, computing

directly the top-k similarity join on them will be a big challenge, we divide our

RDD-based algorithm into four steps, each of which owns its RDD transformations or

actions. First, we compute each point’s signature S(p). Second, we use BKDRhash[12]

function to compute the hash-values of each point’s signature S(p) by which all points

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 61

will be distributed to different buckets. Third, we do the groups of buckets by merging

two different buckets to one. Finally, we calculate the local top-k similar pairs in each

group by using a parallel divided and conquer algorithm TopK-DC, and then do the globle

top-k pairs.

4.2. Computing Each point’s Signature 𝐒(𝐩)

The original data are organized in a relational table which consists two columns: the ID

of multidimensional point and its data record. And all the records here form thedataset

M: {p1, p2, … , pn}. The first step is to launch a RDD transformation for computing each

point’s signature S(p). Figure. 1 shows the dataflow of this step.

Figure1. The Dataflow of Signature Computation

As showed in Figure. 1, a RDD will be created by multidimensional data files stored in

the Hadoop distributed file system (HDFS). The RDD sequentially reads each point from

the input split, and then uses the LSH function families mentioned in the section 2.1 to

compute each point’s signature S(p) . For each point, the RDD executes a map

transformation to output key-value pairs < 𝑖, h1(p), h2(p), … , hd(p) >, then another map

transformation will perform the concatenation of d hash values to signature < 𝑖, 𝑆(pi) >.

4.3. Data Division

The step is to divide the multidimensional data into a number of buckets by hashing

their signatures. The dataflow of this step is shown in Figure. 2.

First, we need to define a hash function which maps multidimensional records into

different buckets in the RDD map transformation. In this paper, we use the

BKDRhash[12] function BH() as the hash method because of its higher speed and less

collision. With the hash function, the map(BH) transformation maps the key-value pairs

< 𝑖, S(pi) > into key-value pairs < 𝐵𝐻(S(pi)), pi >by performing hash calculation over

each signature S(pi) for each point pi. Then a groupByKey transformation will be

executed to group the values into a hashing bucket Bi with 1≤i≤m by the same key.

Finally, this transformation outputs key-value pairs < Bi, list[Bi] >, where list[Bi] is the

list of data records in the same bucket Bi.

In conclusion, we formalize the map tasks and reduce tasks in the step below:

map(BH): <key1=ri,value1=sig(pi)>

 →<key2=BH(sig(pi)),value2=pi>

groupByKey: <key2=BH(sig(pi)) ,value2=pi> →<key3=Bi ,value3=list[Bi] >

key value key value key value

1 p1 p1 <h1(p1),h2(p1),…,hd(p1)> p1 sig(p1)

i pi pi <h1(pi),h2(pi),…,hd(pi)> pi sig(pi)

n pn pn <h1(pn),h2(pn),…,hd(pn)> pn sig(pn)

… …

… …

… …

… ……

… ……

… ……

HDFS

… …

… …

… …

map(ƒ) map

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

62 Copyright ⓒ 2015 SERSC

Figure 2. The Dataflow of Data Division

4.4. Bucket Group

Based on the results of the previous step, this step is to generate all pairs of data

records by combining two buckets Bi and Bj into one pair< Bi, Bj >, where i<j. Figure. 3

shows the dataflow of bucket group.

Figure 3. The Dataflow of Bucket Group

Specially, a transformation named cartesian, creating a Cartesian production of two

RDDs, can contribute the combination of two buckets. In doing so, we obtain the buckets

combinations, but with the by-product of duplication. Fortunately, the filter

transformation is really available to remove the duplicates. Finally, the transformation

outputs key-value pair <(Bi,Bj),list[Bi]> where i≤j≤m.

In conclusion, we formalize the cartesian and filter transformation in the step below:

cartesian: <key1=Bi,value1=list[Bi]> →<key2=(Bi,Bj),value2=list[Bi,Bj]>(1≤i,j≤m)

filter: <key2=(Bi,Bj),value2= list[Bi,Bj]>

 →<key3=(Bi,Bj),value3=list[Bi,Bj]>(1≤i≤j≤m)

Figure 4. The Dataflow of Calculating Top-k Pairs

key value key value

p1 sig(p1) BH(sig(p1)) p1 key value

B1 list[B1]

pi sig(pi) BH(sig(pi)) pi

Bi list[Bi]

Bm list[Bm]

pn sig(pn) BH(sig(pn)) pn

…

…

… …

… …

… …

…

…

… …

… …

… …

map(BH) groupByKey

key value key value

B1 list[B1] <B1,B1> list[B1,B1]

… … key value

<B1,Bi> list[B1,Bi] <B1,B2> list[B1,B2]

Bi list[Bi] … … … …

<B1,Bm> list[B1,Bm] <B1,Bi> list[B1,Bi]

… … … …

Bm list[Bm] <Bi,B1> list[Bi,B1] <B1,Bm> list[B1,Bm]

… … … …

<Bi,Bi> list[Bi,Bi] <Bi,Bi+1> list[Bi,Bi+1]

key value … … … …

B1 list[B1] <Bi,Bm> list[Bi,Bm] <Bi,Bm> list[Bi,Bm]

… … … …

<Bm,B1> list[Bm,B1] <Bm-2,Bm-1> list[Bm-2,Bm-1]

Bi list[Bi] … … <Bm-2,Bm> list[Bm-2,Bm]

<Bm,Bi> list[Bm,Bi] <Bm-1,Bm> list[Bm-1,Bm]

… …

Bm list[Bm] <Bm,Bm> list[Bm,Bm]

… …

… …

… …

… …

cartesian filter

key value key value key value key value

<B1,B2> list[B1,B2] <B1,B2> local pairs dist 1 pair 1 1 1st pair

… … … … dist 2 pair 2 2 2st pair

<B1,Bi> list[B1,Bi] <B1,Bi> local pairs

… … … …

<B1,Bm> list[B1,Bm] <B1,Bm> local pairs dist i pair i k kst pair

… … … … dist i+1 pair i+1

<Bi,Bi+1> list[Bi,Bi+1] <Bi,Bi+1> local pairs

… … … …

<Bi,Bm> list[Bi,Bm] <Bi,Bm> local pairs dist j pair j

… … … … dist j+1 pair j+1

<Bm-2,Bm-1> list[Bm-2,Bm-1] <Bm-2,Bm-1> local pairs

<Bm-2,Bm> list[Bm-2,Bm] <Bm-2,Bm> local pairs

<Bm-1,Bm> list[Bm-1,Bm] <Bm-1,Bm> local pairs dist h-1pair h-1

dist h pair h

… …

HDFS

… …

… …

… …

map(TopK-DC) flatmap sortByKey

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 63

4.5. Calculating Top-k Similar Pairs

The final step is to calculate the top-k similar pairs of multidimensional records by

using all bucket group results. We first use a RDD transformation with TopK-DC

function to calculate the local top-k closest pairs in each bucket group. And then the flat

Map transformation outputs the global closest pairs to the sort ByKey transformation to

sort by their Hamming distance. Subsequently, the top-k pairs are our goals and will be

saved into HDFS. The dataflow of this step is shown in Figure. 4.

To improve the efficiency in finding local top-k closest pairs, we propose a

divide-and-conquer algorithm TopK-DC to do calculation in parallel. Thus, each

multidimensional record becomes one point in a d-dimensional space. In such

d-dimensional space, the TopK-DC algorithm divides the dataset M into two sides by a

hyperplane and to find the top-k closest pairs on each side recursively. To compute the

distances of the pairs crossing the hyperplane, the TopK-DC algorithm invokes recursions

with next splitting dimensions of signatures until there remains only a single dimension

not split yet so that we can consider only constantnumber of distance computations for

each multidimensional record when wecompute the distances of the pairs crossing the

hyper plane. The pseudo code of TopK-DC is presented in Figure. 5. The TopK-DC takes

the dimension lof signatures S(p)sfor dividing M,k, and (d-l+1) arrays, Xl, ..., Xdas its

input values. All arrays Xiwith l≤i≤d contain the same and are sorted by thei-thdimension

of signatures S(p)s.

Function TopK-DC (l, k, Xl, … , Xd)

(1) Check the boundarycondition whether |Xl| ≤ 2. If the condition is true, it justreturns

the pairs.

(2) Divide the input multidimensional record into two partitions{XRl, … ,XRd} and {XLl,

…, XLd}.

(3) Invoke TopK-DC recursively foreach partition with the same size,HL = TopK-DC (l,

k, XRl, … ,XRd) and HR = TopK-DC (l, k, XLl, … , XLd).

(4) Set H= HL∪HR.

(5) Find the k-th similar pair H(k) in H and its distanceδ=DH(H(k)) using Eq. (4).

(6) Calculate all the pairs whose distances is at most the distance of the k-th pair from

recursive calls TopK-DC(l+1, k, Bl+1, … , Bd).

Figure 5. The Topk-DC Algorithm

The TopK-DC algorithm is implemented in the map(TopK-DC) transformation in

order to find the local top-k join pairs efficiently in each bucket group. Then the flatMap

transformation flattens all the local pairs to global closest pairs. Given all the local top-k

join pairs, the sort ByKey transformation finally sorts all of them by their Hamming

distances so that we can find the final top-k closet pairs.

5. Experiments

5.1. Methodology and Cluster Setup

The experiments run on an8-node cluster with 4 cores, 4GB of RAM running Ubuntu

12.10 operating systems. All algorithms were implemented using Javac Compiler of

version 1.7. The new version Spark-0.91 and scala-2.11.0 are chose in this paper. In order

to study the performance of our algorithms using Spark, we also do another

implementation in Hadoop-1.1.2 with MapReduce. We measure the performance in term

of execution time as well as speedup and scaleup[13].

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

64 Copyright ⓒ 2015 SERSC

We test several multi-dimensional datasets with varied dataset size in our experiments.

Specially, we generate several synthetic datasets with varying the number of data records

from 10,000 to 200,000.

5.2. Performance Evaluation

In our experiments, we evaluate the effects of the dataset size n, the result number k,

and the number of machines s using Spark. The default setting for parameters is: n

=100,000, k = 20 and s = 6.

5.2.1. The Effect of k

We now evaluate the effect of k on the performance of our proposedtechniques.

Figure.6 presents the running time by varying k from 10 to 80.As the graph confirms,

theperformances of our algorithm do not degrade that much as k increases. And Spark

with persistence in memory only spends one half of the time less than Hadoop does, and

Spark with non-persistence also has a better performance than Hadoop does.

Figure 6. Varying k

5.2.2. The Effect of n

We now study the scalability of RDD-based algorithm by changing the number of

multidimensional recordsn from 10,000to 200,000. The execution times are shown in

Figure.7.Obviously, we can see that the overall execution time of our algorithm increases

quadratically when we enlargethe data size. This is determined by the fact that the number

ofmultidimensionalrecord pairs increase quadratically with the data size.Even though both

of the time overhead in Hadoop and Spark increasequadratically, Spark consumes less

time because of its better framework.

Figure 7.Varying n

5.2.3. Effect of s

We varied the number of machines s from 2 to 8 in our experiments.Figure.9 shows us

that as the numberof machines increases, the performances of our algorithmsare also

improved. Specially, Spark has a remarkable performance than Hadoop really does.

0

500

1000

1500

2000

10 20 40 80Ex
e

cu
ti

o
n

 t
im

e

(s
)

k

spark(persistence
in memory)

spark(non-
persistence)

hadoop

0

2000

4000

6000

10000 50000 100000 200000

Ex
e

cu
ti

o
n

 t
im

e

(s
)

Number of records

spark(persistence
in memory)

spark(non-
persistence)

hadoop

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 65

Figure 8. Varying s

6. Related Work

Performing similarity joins of multidimensional data in the traditional setup has been

extensively studied in the literature [14, 15, 16]. Nevertheless, these previous works

focus on a single machine and performs similarity joins on spatial indexes like R-trees,

hash functions, etc. The work in [15] first built an R-tree on each database, then traversed

R-trees in depth-firstapproach, and finally got the similar pairs in leaf nodes. However,

the time complexities of these similarity joins algorithms grow exponentially. In general,

given a threshold, a similarity join algorithm can use inverted indexes for pruning, such as

[17,18,19]. For similarity join queries, [20] proposed several similarity measures like

cosine distance, and Jaccard coefficient. Unfortunately, these algorithms have no

scalability for large data since they mainly assume that all data can be loaded into main

memory.

Nowadays, studies about similarity join of multidimensional data over MapReduce, a

popular model for large-scale data processing, develop increasingly. [21] proposed novel

algorithms to execute kNN joins efficiently on large data stored in a MapReduce cluster.

In [26], they studied the problem of the top-k closest pair problem with Euclidean

distance using MapReduce and presented scalable MapReduce algorithms. However,

restricted by the blemish of Hadoop framework, such as high-latency, no control of data

co-partitioning, lack of optimization based on data statistics, much overhead of task

scheduling and launch, similarity join queries can’t achieve a higher efficiency.

7. Conclusion

This work studies parallel top-k similarity join queries over large multidimensional

data using Spark. We propose a four-step approach and explore several solutions to

improve the efficiency of computation. We first introduce a LSH-based distance function

for efficient multidimensional similarity computation. We next adopt all pair partitioning

method to divide the data into different partition and we also leverage serial computation

strategy for answering top-k closest pairs by only checking point pairs in parallel within

each partition. By experiment results, this paper shows the better effectiveness and

scalability of our RDD-based algorithms than Hadoop’s.

References

[1] Z.Abbassi, V.S. Mirrokni,“A recommender system based on local random walks and spectral methods”,
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis. ACM, (2007), pp.102-108.

[2] M.McPherson, L.Smith-Lovin, “Cook J M. Birds of a feather: Homophily in social networks”, Annual
review of sociology, (2001), pp.415-444.

[3] Plato, “Plato: In Twelve Volumes”, Harvard University Press, (1982).
[4] Apache, Spark, http://spark.apache.org, (2014).
[5] M.Zaharia, M.Chowdhury, T.Das, A.Dave, J.Ma, M.McCauley, M.Franklin, S.Shenker, and I.

Stoica,“Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing”,
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, (2012).

0

1000

2000

3000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

(s
)

Number of machnes

spark(persistenc
e in memory)

spark(non-
persistence)

hadoop

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

66 Copyright ⓒ 2015 SERSC

[6] Apache, Hadoop, http://hadoop.apache.org, (2013).
[7] J.Dean, S. Ghemawat,“MapReduce: simplified data processing on large clusters”, Communications of

the ACM,(2008), vol.51, no 1, pp.107-113.
[8] A. Gionis, P. Indyk, R.Motwani,“Similarity search in high dimensions via hashing”, VLDB(1999),

vol.99,pp.518-529.
[9] R. W. Hamming,“Error detecting and error correcting codes”, Bell System technical journal, (1950),

vol.29, no. 2, pp.147-160.
[10] R. S. Xin, J. Rosen, M. Zaharia, “Shark: SQL and rich analytics at scale”, Proceedings of the 2013

international conference on Management of data. ACM, (2013), pp. 13-24.
[11] B. Hindman, A. Konwinski, M. Zaharia, “Mesos: A platform for fine-grained resource sharing in the

data center”, Proceedings of the 8th USENIX conference on Networked systems design and
implementation, (2011), vol. 11, pp. 22-22.

[12] C. Henke, C. Schmoll, T.Zseby,“Empirical evaluation of hash functions for multipoint measurements”,
ACM SIGCOMM Computer Communication Review, vol. 38, no. 3, (2008).

[13] D. DeWitt, J.Gray,“Parallel database systems: the future of high performance database
systems”,Communications of the ACM, vol. 35,no. 6, (1992).

[14] T. Brinkhoff, H. P. Kriegel, B. Seeger,“Efficient processing of spatial joins using R-trees”, (1993).
[15] Y. W. Huang, N. Jing, E. A. Rundensteiner,“Spatial joins using R-trees: Breadth-first traversal with

global optimizations”, VLDB, (1997),vol. 97, pp. 25-29.
[16] M. L. Lo, C. V.Ravishankar,“Spatial hash-joins”, ACM SIGMOD Record, (1996),vol. 25, no. 2, pp.

247-258.
[17] R. J. Bayardo, Y. Ma, R.Srikant,“Scaling up all pairs similarity search”, Proceedings of the 16th

international conference on World Wide Web, ACM, (2007), pp. 131-140.
[18] S. Chaudhuri, V. Ganti, R.Kaushik,“A primitive operator for similarity joins in data cleaning”, Data

Engineering, 2006. ICDE'06, Proceedings of the 22nd International Conference on. IEEE, (2006), pp.
5-5.

[19] S. Sarawagi, A. Kirpal,“Efficient set joins on similarity predicates”, Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ACM, (2004),pp. 743-754.

[20] C. Xiao, W. Wang, X. Lin,“Efficient similarity joins for near-duplicate detection”, ACM Transactions
on Database Systems (TODS),vol. 36, no. 3,(2011), p. 15.

[21] C.Zhang, F. Li, J.Jestes,“Efficient parallel kNN joins for large data in MapReduce”, Proceedings of the
15th International Conference on Extending Database Technology, ACM, (2012).

[22] Y. Kim, K.Shim,“Parallel top-k similarity join algorithms using MapReduce”, Data Engineering
(ICDE), 2012 IEEE 28th International Conference on. IEEE, (2012).

Authors

Chen Dehua, he is currently an associate professor in School of

Computer Science and Technology, Donghua University, Shanghai,

China. His research interests include big data management, high

dimensional data query processing and information diffusion in social

network. He was a visiting scholar at University of Stavanger,

Norway.

Shen Changgan, he is currently working toward the master degree

in School of Computer Science and Technology, Donghua

University, Shanghai, China. His research interests include big data

query processing and time series data management.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 67

Feng Jieying, he is currently working towards the master degree

in School of Computer Science and Technology, Donghua University,

Shanghai, China. Her research interests include big data query

processing, natural language processing, and data mining.

Le Jiajin, he is currently a professor of computer science and

software engineering at Donghua University, Shanghai, China. He

serves as the research director of the Center for Medical Wisdom at

Donghua University. His main research interests include database

systems, data warehousing, big data systems and medical wisdom.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

68 Copyright ⓒ 2015 SERSC

