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Abstract 

Top-k similarity join has been used in a wide range of applications that require 

calculating the most top-k similar pairs of data records in a given database. However, the 

time performance will be a challenging problem, as an increasing trend of applications 

that need to process massive data. Obviously, finding the top-k pairs in such vast amounts 

of data with traditional methods is awkward.  

In this paper, we propose the RDD-based algorithm to perform the top-k similarity join 

for massive multidimensional data over a large cluster built with commodity machines 

using Spark. The RDD-based algorithm consists of four steps, which loads a set of 

multidimensional records stored in HDFS and finally output an ordered list of top-k 

closest pairs into HDFS. Firstly, we develop an efficient distance function based on 

LSH(Locality Sensitive Hashing) to improve the efficiency in pairwise similarity 

comparison. Secondly, to minimize the amount of data during the RDD running-time, we 

split conceptually all pairs of LSH signatures into partitions. Moreover, we exploit a 

serial computation strategy to calculate all top-k closest pairs in parallel. Finally, all the 

local top-k pairs sorted by their Hamming distances will contribute to the global top-k 

pairs.  In this paper, the performance evaluation between Spark and Hadoop confirms the 

effectiveness and scalability of our RDD-based algorithm. 

 

Keywords: Massive multidimensional data; top-k similarity join; Spark; Resilient 

Distributed Datasets; Hadoop 

 

1. Introduction 

Top-k similarity join, such query plays an important role in a wide range of applications 

including time series analysis, CAD, similarity search, social networks and link prediction，
etc. In these domains, numerous real-world information can be presented as 

multidimensional data which contain a huge amount of useful and valuable information. 

For instance, assume that an IT company plans to recruit one project manager and one 

product manager. However, how to choose the best two is a hard work.  Recently, a 

breakthrough pointis to analyzing applicants’ professional social networks, like LinkeIn[1], 

a good and trendy way for employers to seek candidates. In paper [2], we know that there is 

an interesting observation in sociology: the more similar two individuals are, the greater the 

trust between them is. Thus, we expect that the project manager and the product manager 

have good trusting relationships. Plato observed in Phaedrus that “similarity begets 

friendship” [3]. Therefore, analyzing all the candidates’ social network, we could find the 

top-1 pair of managers who are similar to each other if they have many common friends. 

Finding top-k similar pairs in large multidimensional databases is a formidable 

problem as the vast amounts of multidimensional data usually do not fit in the main 

memory of one machine. Recently, many applications of big data analysis leverage cloud 

computing technologies in order to efficiently deal with this amount of data. Spark[4], a 

super-fast, open source large-scale data processing and advanced analytics engine in use at 
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Alibaba, Cloudera, Databricks, IBM, Intel, and Yahoo, among others, is a top-level 

project of the Apache Software Foundation now. And its programming model, Resilient 

Distributed Datasets (RDDs)[5], a distributed memory abstraction that lets programmers 

performin-memory computations on large clusters in a fault-tolerant manner, provides a 

restricted form of shared memory based on coarse-grained transformations. RDDprovides 

numerous abstractions for accessing a cluster’s computational resources and efficiently 

leverage distributed memory. It can efficiently reuse intermediate results across multiple 

computations and even 100x faster than Hadoop[6]MapReduce[7] in memory, or 10x 

faster on disk[4].In this paper, we use RDD as the parallel data-processing framework to 

calculate top-k similar pairs of multidimensional data records in large databases. 

Motivated by these, in this paper, we develop a scalable parallelized algorithm for the 

top-k similarity join over massive multidimensional data with LSH-based distance. 

However, when the multidimensional data quantity becomes more and more, computing 

the top-k similarity join on them immediately can be a big challenge. Our proposed 

algorithm leverages the idea of parallel computation in RDD to complete two main tasks 

before computing top-k similar pairs. The first task is to leverage an RDD to compute LSH 

signature for each point record in a parallel way. The second one is to split conceptually 

all pairs of LSH signatures into partitions such that every pair appears in a single partition 

only. After all pair partitioning, we can correctly find the top-k closest pairs by computing 

the top-k closest pairs in each partition separately. To improve the efficiency in finding 

the local top-k closest pairs in each partition, we propose the divide-and-conquer 

algorithm in traditional settings which will be used in each partition later when using the 

RDD framework. Based on all the top-k closest pairs from all partitions, we can select the 

final top-k closest ones. Even though we still compute overall Θ(n2) distance 

computations, the execution times of the top-k closest pair algorithms using RDD will be 

actually improved since Spark’s good architecture and  outstanding performance. 

 

2. Background 
 

2.1. Locality-sensitive Hashing 

Locality-sensitive Hashing(LSH) is a method of performing probabilistic dimension 

reduction of high-dimensional data. The basic idea is that if two points are close together, 

their projection remains close. So the similar points hashed are mapped to the same 

buckets with high probability. Comparing with conventional hash functions, such as those 

used in cryptography, LSH aims to maximize probability of "collision" of similar points 

rather than avoid collisions. 

Definition 1:ALSHfamily[8] ƒ is defined for a metric spaceMwith a thresholdr >
0andanapproximationfactorc > 1.Thefamilyƒis a family of functionsh: M → Swhich m 

appoints from Мtoabuckets ∈ S. The LSH family satisfies the following conditions for 

any two points p, q ∈ M, using a functionh ∈ ƒwhich is chosen uniformly at random: 

If 𝑑(𝑝, 𝑞) ≤ 𝑟, then 𝑃𝑟ƒ [ℎ(𝑞)  =  ℎ(𝑝)] ≥ 𝑃1      (1) 

If 𝑑(𝑝, 𝑞) ≥ 𝑐𝑟, then 𝑃𝑟ƒ[ℎ(𝑞)  =  ℎ(𝑝)] ≤ 𝑃2      (2) 

A family is interesting when it satisfies P1 > P2 . We call such a family 

 ƒasƒ (c, r, P1, P2)-sensitive. 

 
2.2. Hamming Distance 

Named after Richard Hamming, paper[9] introduced the fundamental of the Hamming 

distance. The hamming distance measures the number of positions at which the 

corresponding symbols are different between two strings of equal length. It has been used 

in some disciplines like information theory, cryptography, coding theory, and etc. 
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Definition 2:Let H = {0,1}. The d-dimensional Hamming Space Hd consists of bit 

strings of length d. Each point p ∈ Hd is a string p = (p1, p2, … , pd) of zero's and 

one's. Given two points p, q ∈ Hd, the Hamming distance dH(p, q)between them is the 

number of positions at which the corresponding strings differ, i.e.,dH(p, q) = |{i: pi ≠
qi}|. 

 

2.3. Spark 

Spark, a MapReduce-like cluster computing engine, extends the MapReduce model to 

better support two common classes of analytics apps: (1) iterative algorithms (machine 

learning, graphs); (2)interactive datamining. Unlike tranditional Map Reduce engines[10], 

Spark has several different features: 

 Unlike the two-stage MapReduce topology,it has an advanced DAG execution 

engine that supports cyclic data flow. 

 It provides an in-memory storage abstraction called ResilientDistributed Datasets 

(RDDs) that offers over 80 high-level operators that make it easy to build parallel 

apps, and automatically recover from failures. 

 It optimizes the engine for low latency. Spark can efficientlymanage tasks on 

clusters ofthousands of cores in sub-second, while engines like Hadoop incur a 

latencyof 5 to 10 seconds to launch each task with the heart-beat mechanism. 

 It also provides powerful integration with Hadoop ecosystem. Spark is easy to run 

standalone or on EC2or Mesos[11], and can read from HDFS, HBase, Cassandra, 

and any Hadoop data source. 

In addition to those features above, Spark provides other difference features that 

contribute to its superior performance. 

 

2.4. Resilient Distributed Datasets (RDDs) 

Resilient distributed datasets (RDDs), the main abstraction of Spark, represents 

immutable, partitionedcollectionsthatcanbecreatedthroughvariousdata-paralleloperators 

(e.g., map, group-by, join).Each RDD is a read-only, partitioned collection of records and 

can only be created through deterministic operations on either (1) data in stable storage or 

(2)other RDDs. 

RDDs support two types of operations: transformations, which create a new dataset 

from an existing one, and actions, which return a value to the driver program after running 

a computation on the dataset.  All transformations in Spark are lazy, in that they do not 

compute their results right away. Instead, they just remember the transformations applied 

to some base dataset (e.g. a file). The transformations are only computed when an action 

requires a result to be returned to the driver program. This design enables Spark to run 

more efficiently. Table 1 lists several RDD transformations and actions available in 

Spark. 

 

3. Problem Definition 

Let M: {p1, p2, … , pn}  be the d-dimensional dataset in which each point pi is 

represented as < 𝑝i(1), pi(2), … , pi(d) > , and  ƒ ∶ {h1, h2, … , hd}  be the LSH function 

family with the function hi(p) = ⌊(ai + bi) ω⁄ ⌋, where ai is a d-dimensional vector 

whose coordinates are  
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Table 1.  Several Transformations and Actions Available on RDDs in Spark 

Transformations map( f : T)U) : RDD[T])RDD[U] 

filter( f : T)Bool) : RDD[T])RDD[T] 

Flat Map( f : T)Seq[U]) : RDD[T])RDD[U] 

groupByKey() : RDD[(K, V)])RDD[(K, Seq[V])] 

Reduce ByKey( f : (V;V))V) : RDD[(K, V)])RDD[(K, V)] 

union() : (RDD[T];RDD[T]))RDD[T] 

Partition By(p: 

Partitioner[K]) : 

RDD[(K, V)])RDD[(K, V)] 

sort(c : Comparator[K]) : RDD[(K, V)])RDD[(K, V)] 

Actions count() : RDD[T])Long 

reduce( f : (T;T))T) : RDD[T])T 

collect() : RDD[T])Seq[T] 

picked uniformly at random from a normal distribution, and bi is a random variable 

uniformly distributed in the range [0, ω]. SuposedH(p, q) is the Hamming distance. 

We first define the LSH-based distance: 

Definition 3: Given two pointsp1andp2, their LSH-based distance: 

D(p1, p2) = 1 − [Prƒ(h(p1) =  h(p2))].       (3) 

Then, we give the definition of multidimensional signature: 

Definition 4: For a given d-dimensional point p, its 

signatureS(p): < h1(p), h2(p), … , hd(p) > is the concatenation of all the hash values of 

h1(p), h2(p), … , hd(p). 

Next is the fefinition of Hamming distance of d-signatures: 

Definition 5: Given the d-signaturesS(p1) andS(p2) of two points p1 andp2, the 

Hamming distance is 

DH(S(p1), S(p2)) = ∑ dH(hi(p1), hi(p2))d
i=1 /d,      (4) 

where dH(hi(p1), hi(p2)) = {
1, hi(p1) ≠ hi(p2)
0, hi(p1) = hi(p2)

. 

Proposition 1: For two pointsp1andp2, their LSH-based distance D(p1, p2)is equal to 

the Hamming distance DH(S(p1), S(p2))of two signatures S(p1) andS(p2).  

In summary, the computation of the LSH-based distance of multidimensional points 

can be transformed into the computation of Hamming distance of multidimensional 

points’ signatures. And computing the top-k similarity join with Hamming distance over 

the multidimensional dataset, RTOP(k): {(pi(1), pj(1)), (pi(2), pj(2)), … (pi(k), pj(k))} , 

needs to satisfy the conditions as follows: 

DH(S(pi(1)),S(pj(1)))≤DH(S(pi(2)),S(pj(2)))≤...≤DH(S(pi(k)), S(pj(k))) holds. 

For each pair (pi(l),pj(l))∈ RTOP(k), we have i(l) < 𝑗(l)andi(l), j(l) ∈ R. 

For each pair (i(l), j(l))withi(l) < 𝑗(l), (i(l), j(l)) ∉  RTOP(k)and (i(l), j(l)) ∈ R, we 

have DH(S(pi(k)), S(pj(k)))≤DH(S(pi(l)),S(pj(l))). 

 

4. RDD-based Algorithm 
 

4.1. Algorithm Overview 

As mentioned previously, computing the LSH-based distance of two multidimensional 

points can actually be transformed into computing the Hamming distance of 

theird-signatures. Considering that when the multidimensional data is massive, computing 

directly the top-k similarity join on them will be a big challenge, we divide our 

RDD-based algorithm into four steps, each of which owns its RDD transformations or 

actions. First, we compute each point’s signature S(p). Second, we use BKDRhash[12] 

function to compute the hash-values of each point’s signature S(p) by which all points 



International Journal of Database Theory and Application  

Vol.8, No.3 (2015) 

 

 

Copyright ⓒ 2015 SERSC  61 

will be distributed to different buckets. Third, we do the groups of buckets by merging 

two different buckets to one. Finally, we calculate the local top-k similar pairs in each 

group by using a parallel divided and conquer algorithm TopK-DC, and then do the globle 

top-k pairs. 

 

4.2. Computing Each point’s Signature 𝐒(𝐩) 

The original data are organized in a relational table which consists two columns: the ID 

of multidimensional point and its data record. And all the records here form thedataset 

M: {p1, p2, … , pn}. The first step is to launch a RDD transformation for computing each 

point’s signature S(p). Figure. 1 shows the dataflow of this step.  

 

 

Figure1. The Dataflow of Signature Computation 

As showed in Figure. 1, a RDD will be created by multidimensional data files stored in 

the Hadoop distributed file system (HDFS). The RDD sequentially reads each point from 

the input split, and then uses the LSH function families mentioned in the section 2.1 to 

compute each point’s signature S(p) . For each point, the RDD executes a map 

transformation to output key-value pairs < 𝑖, h1(p), h2(p), … , hd(p) >, then another map 

transformation will perform the concatenation of d hash values to signature < 𝑖, 𝑆(pi) >. 

 

4.3. Data Division 

The step is to divide the multidimensional data into a number of buckets by hashing 

their signatures. The dataflow of this step is shown in Figure. 2. 

First, we need to define a hash function which maps multidimensional records into 

different buckets in the RDD map transformation. In this paper, we use the 

BKDRhash[12] function BH() as the hash method because of its higher speed and less 

collision. With the hash function, the map(BH) transformation maps the key-value pairs 

< 𝑖, S(pi) > into key-value pairs < 𝐵𝐻(S(pi)), pi >by performing hash calculation over 

each signature S(pi) for each point pi. Then a groupByKey transformation will be 

executed to group the values into a hashing bucket Bi with 1≤i≤m by the same key. 

Finally, this transformation outputs key-value pairs < Bi, list[Bi] >, where list[Bi] is the 

list of data records in the same bucket Bi. 

In conclusion, we formalize the map tasks and reduce tasks in the step below:  

map(BH):  <key1=ri,value1=sig(pi)>  

 →<key2=BH(sig(pi)),value2=pi> 

groupByKey: <key2=BH(sig(pi)) ,value2=pi>  →<key3=Bi ,value3=list[Bi] > 

 

key value key value key value

1 p1 p1 <h1(p1),h2(p1),…,hd(p1)> p1 sig(p1)

i pi pi <h1(pi),h2(pi),…,hd(pi)> pi sig(pi)

n pn pn <h1(pn),h2(pn),…,hd(pn)> pn sig(pn)

… …

… …

… …

… ……

… ……

… ……

HDFS

… …

… …

… …

map( ƒ ) map
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Figure 2. The Dataflow of Data Division 

4.4. Bucket Group 

Based on the results of the previous step, this step is to generate all pairs of data 

records by combining two buckets Bi and Bj into one pair< Bi, Bj >, where i<j. Figure. 3 

shows the dataflow of bucket group. 

 

 

Figure 3. The Dataflow of Bucket Group 

Specially, a transformation named cartesian, creating a Cartesian production of two 

RDDs, can contribute the combination of two buckets. In doing so, we obtain the buckets 

combinations, but with the by-product of duplication. Fortunately, the filter 

transformation is really available to remove   the duplicates. Finally, the transformation 

outputs key-value pair <(Bi,Bj),list[Bi]> where i≤j≤m.  

In conclusion, we formalize the cartesian and filter transformation in the step below: 

cartesian: <key1=Bi,value1=list[Bi]> →<key2=(Bi,Bj),value2=list[Bi,Bj]>(1≤i,j≤m) 

filter:  <key2=(Bi,Bj),value2= list[Bi,Bj]>

 →<key3=(Bi,Bj),value3=list[Bi,Bj]>(1≤i≤j≤m) 

 

Figure 4.  The Dataflow of Calculating Top-k Pairs 

key value key value

p1 sig(p1) BH(sig(p1)) p1 key value

B1 list[B1]

pi sig(pi) BH(sig(pi)) pi

Bi list[Bi]

Bm list[Bm]

pn sig(pn) BH(sig(pn)) pn

…

…

… …

… …

… …

…

…

… …

… …

… …

map(BH) groupByKey

key value key value

B1 list[B1] <B1,B1> list[B1,B1]

… … key value

<B1,Bi> list[B1,Bi] <B1,B2> list[B1,B2]

Bi list[Bi] … … … …

<B1,Bm> list[B1,Bm] <B1,Bi> list[B1,Bi]

… … … …

Bm list[Bm] <Bi,B1> list[Bi,B1] <B1,Bm> list[B1,Bm]

… … … …

<Bi,Bi> list[Bi,Bi] <Bi,Bi+1> list[Bi,Bi+1]

key value … … … …

B1 list[B1] <Bi,Bm> list[Bi,Bm] <Bi,Bm> list[Bi,Bm]

… … … …

<Bm,B1> list[Bm,B1] <Bm-2,Bm-1> list[Bm-2,Bm-1]

Bi list[Bi] … … <Bm-2,Bm> list[Bm-2,Bm]

<Bm,Bi> list[Bm,Bi] <Bm-1,Bm> list[Bm-1,Bm]

… …

Bm list[Bm] <Bm,Bm> list[Bm,Bm]

… …

… …

… …

… …

cartesian filter

key value key value key value key value

<B1,B2> list[B1,B2] <B1,B2> local pairs dist 1 pair 1 1 1st pair

… … … … dist 2 pair 2 2 2st pair

<B1,Bi> list[B1,Bi] <B1,Bi> local pairs

… … … …

<B1,Bm> list[B1,Bm] <B1,Bm> local pairs dist i pair i k kst pair

… … … … dist i+1 pair i+1

<Bi,Bi+1> list[Bi,Bi+1] <Bi,Bi+1> local pairs

… … … …

<Bi,Bm> list[Bi,Bm] <Bi,Bm> local pairs dist j pair j

… … … … dist j+1 pair j+1

<Bm-2,Bm-1> list[Bm-2,Bm-1] <Bm-2,Bm-1> local pairs

<Bm-2,Bm> list[Bm-2,Bm] <Bm-2,Bm> local pairs

<Bm-1,Bm> list[Bm-1,Bm] <Bm-1,Bm> local pairs dist h-1pair h-1

dist h pair h

… …

HDFS

… …

… …

… …

map(TopK-DC) flatmap sortByKey
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4.5. Calculating Top-k Similar Pairs 

The final step is to calculate the top-k similar pairs of multidimensional records by 

using all bucket group results. We first use a RDD transformation with TopK-DC 

function to calculate the local top-k closest pairs in each bucket group. And then the flat 

Map transformation outputs the global closest pairs to the sort ByKey transformation to 

sort by their Hamming distance. Subsequently, the top-k pairs are our goals and will be 

saved into HDFS.  The dataflow of this step is shown in Figure. 4. 

To improve the efficiency in finding local top-k closest pairs, we propose a 

divide-and-conquer algorithm TopK-DC to do calculation in parallel. Thus, each 

multidimensional record becomes one point in a d-dimensional space. In such 

d-dimensional space, the TopK-DC algorithm divides the dataset M into two sides by a 

hyperplane and to find the top-k closest pairs on each side recursively. To compute the 

distances of the pairs crossing the hyperplane, the TopK-DC algorithm invokes recursions 

with next splitting dimensions of signatures until there remains only a single dimension 

not split yet so that we can consider only constantnumber of distance computations for 

each multidimensional record when wecompute the distances of the pairs crossing the 

hyper plane. The pseudo code of TopK-DC is presented in Figure. 5. The TopK-DC takes 

the dimension lof signatures S(p)sfor dividing M,k, and (d-l+1) arrays, Xl, ..., Xdas its 

input values. All arrays Xiwith l≤i≤d contain the same and are sorted by thei-thdimension 

of signatures S(p)s. 

 

Function TopK-DC (l, k, Xl, … , Xd) 

(1) Check the boundarycondition whether |Xl| ≤ 2. If the condition is true, it justreturns 

the pairs. 

(2) Divide the input multidimensional record into two partitions{XRl, … ,XRd} and {XLl, 

…, XLd}. 

(3) Invoke TopK-DC recursively foreach partition with the same size,HL = TopK-DC (l, 

k, XRl, … ,XRd) and HR = TopK-DC (l, k, XLl, … , XLd). 

(4) Set H= HL∪HR. 

(5) Find the k-th similar pair H(k) in H and its distanceδ=DH(H(k)) using Eq. (4). 

(6) Calculate all the pairs whose distances is at most the distance of the k-th pair from 

recursive calls TopK-DC(l+1, k, Bl+1, … , Bd). 

Figure 5. The Topk-DC Algorithm 

The TopK-DC algorithm is implemented in the map(TopK-DC) transformation in 

order to find the local top-k join pairs efficiently in each bucket group. Then the flatMap 

transformation flattens all the local pairs to global closest pairs. Given all the local top-k 

join pairs, the sort ByKey transformation finally sorts all of them by their Hamming 

distances so that we can find the final top-k closet pairs. 

 

5. Experiments 
 

5.1. Methodology and Cluster Setup 

The experiments run on an8-node cluster with 4 cores, 4GB of RAM running Ubuntu 

12.10 operating systems. All algorithms were implemented using Javac Compiler of 

version 1.7. The new version Spark-0.91 and scala-2.11.0 are chose in this paper. In order 

to study the performance of our algorithms using Spark, we also do another 

implementation in Hadoop-1.1.2 with MapReduce. We measure the performance in term 

of execution time as well as speedup and scaleup[13]. 
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We test several multi-dimensional datasets with varied dataset size in our experiments. 

Specially, we generate several synthetic datasets with varying the number of data records 

from 10,000 to 200,000.  

 

5.2. Performance Evaluation 

In our experiments, we evaluate the effects of the dataset size n, the result number k, 

and the number of machines s using Spark. The default setting for parameters is: n 

=100,000, k = 20 and s = 6. 

 

5.2.1. The Effect of k 

We now evaluate the effect of k on the performance of our proposedtechniques. 

Figure.6 presents the running time by varying k from 10 to 80.As the graph confirms, 

theperformances of our algorithm do not degrade that much as k increases. And Spark 

with persistence in memory only spends one half of the time less than Hadoop does, and 

Spark with non-persistence also has a better performance than Hadoop does. 

 

 
Figure 6.  Varying k 

 

5.2.2. The Effect of n 

We now study the scalability of RDD-based algorithm by changing the number of 

multidimensional recordsn from 10,000to 200,000. The execution times are shown in 

Figure.7.Obviously, we can see that the overall execution time of our algorithm increases 

quadratically when we enlargethe data size. This is determined by the fact that the number 

ofmultidimensionalrecord pairs increase quadratically with the data size.Even though both 

of the time overhead in Hadoop and Spark increasequadratically, Spark consumes less 

time because of its better framework. 

 

 

Figure 7.Varying n 

5.2.3. Effect of s 

We varied the number of machines s from 2 to 8 in our experiments.Figure.9 shows us 

that as the numberof machines increases, the performances of our algorithmsare also 

improved. Specially, Spark has a remarkable performance than Hadoop really does. 
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Figure 8.  Varying s 

6. Related Work 

Performing similarity joins of multidimensional data in the traditional setup has been 

extensively studied in the literature [14, 15, 16].  Nevertheless, these previous works 

focus on a single machine and performs similarity joins on spatial indexes like R-trees, 

hash functions, etc. The work in [15] first built an R-tree on each database, then traversed 

R-trees in depth-firstapproach, and finally got the similar pairs in leaf nodes. However, 

the time complexities of these similarity joins algorithms grow exponentially. In general, 

given a threshold, a similarity join algorithm can use inverted indexes for pruning, such as 

[17,18,19]. For similarity join queries, [20] proposed several similarity measures like 

cosine distance, and Jaccard coefficient. Unfortunately, these algorithms have no 

scalability for large data since they mainly assume that all data can be loaded into main 

memory. 

Nowadays, studies about similarity join of multidimensional data over MapReduce, a 

popular model for large-scale data processing, develop increasingly. [21] proposed novel 

algorithms to execute kNN joins efficiently on large data stored in a MapReduce cluster. 

In [26], they studied the problem of the top-k closest pair problem with Euclidean 

distance using MapReduce and presented scalable MapReduce algorithms. However, 

restricted by the blemish of Hadoop framework, such as high-latency, no control of data 

co-partitioning, lack of optimization based on data statistics, much overhead of task 

scheduling and launch, similarity join queries can’t achieve a higher efficiency. 

 

7. Conclusion 

This work studies parallel top-k similarity join queries over large multidimensional 

data using Spark. We propose a four-step approach and explore several solutions to 

improve the efficiency of computation. We first introduce a LSH-based distance function 

for efficient multidimensional similarity computation. We next adopt all pair partitioning 

method to divide the data into different partition and we also leverage serial computation 

strategy for answering top-k closest pairs by only checking point pairs in parallel within 

each partition. By experiment results, this paper shows the better effectiveness and 

scalability of our RDD-based algorithms than Hadoop’s. 
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