
International Journal of Database Theory and Application

Vol.8, No.6 (2015), pp.125-132

http://dx.doi.org/10.14257/ijdta.2015.8.6.11

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Fast Pedestrian Detection with Adaboost Algorithm Using GPU

Chong Chao Cai
1, 2*

, Jue Gao
3
, Bian Minjie

1, 4
, Peicheng Zhang

1, 4
 and Honghao

Gao
1, 3

1
School of Computer Engineering and Science, Shanghai University, shanghai,

China
2
 Faculty of Information Technology, Huzhou Vocational & Technical College,

Huzhou, Zhejiang, China
3
Computing Center, Shanghai University, Shanghai, China

4
Shanghai Shang Da Hai Run Information System Co., Ltd, Shanghai, China

caichongchao@163.com

Abstract

Pedestrian detection is one of the hot research problems in computer vision field. The

Cascade AdaBoost System is a commonly used algorithm in this region. However, when

the training datasets become larger, it is still a time consuming process to build one

Adaboost classifier. In this paper we detail an implementation of the AdaBoost algorithm

using the NVIDIA CUDA framework based on the haar features as feature vectors, and

downscaling with integral image. The result shows that we can get nearly 6x from the

standard code to with our CPU implementation to achieve a near real-time performance

and ensure better classification results in misjudgment.

Keywords: Pedestrian Detection, CUDA, Adaboost, Haar Feature, Integral Image

1. Introduction

Pedestrian detection plays an important role in the field of computer vision and has

wide applications such as video monitoring, visual surveillance, smart room, automatic

driver-assistance system and other fields. During the last two decades, the pedestrian

detection problem has received a great amount of interest and various representations and

detection schemes have been proposed. Whether the emerging Internet giants of Google

and Apple, or Ford, Daimler, they had invested a lot of manpower and resources to study

in the field of automatic driving. Fast and accurate real-time pedestrian detection is the key

technique.

There were extensive literatures about human detection which provided a lot of

feasibility research methods. Viola et al [1] proposed a real-time face detection framework

in 2004. The framework used AdaBoost [2] to train a chain of rejection rules that employ

Haar-like wavelets and spatial-temporal differences. A Haar-like feature taking into

account specific location adjacent to a rectangular area in the detection window,

summarizes the difference between the pixel intensities in each region and calculate sums.

Dalal and Triggs [3] proposed the histogram of gradient (HOG) that had robust feature

set and granted excellent detection results. This study got good results in human detection,

and after that many works were based on HOG. Dollar et al [4] benchmarked sliding-

window based pedestrian detectors, and their works included a Matlab toolbox besides

many useful source codes and Caltech Datasets for pedestrian detection benchmark.

In this paper an implementation of the AdaBoost algorithm using the NVIDIA CUDA

framework was introduced. With a Haar-like feature as feature vectors, using integral

image feature for downscaling. The result shows that we can speed up the cascade detector

to achieve a near real-time performance, compared to CPU, The results also present

http://www.iciba.com/grant

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

126 Copyright ⓒ 2015 SERSC

several available benchmark video and show that the speed exceeds the state of art

in calculation in real time.

2. Feature Selection

In the process of pedestrian detection, we need to analyze the features vectors of

detection region in an image or video to determine whether it is the pedestrian. It requires

multi features to build human shape. These features should be good at detecting

pedestrians and non-pedestrians. In this paper, feature extraction based on Haar wavelet.

Figure 1 shows the characteristics for a specific classification are determined by the

specified location, shape, within the area of interest and scale. A simple rectangular Haar-

like feature can be defined as the difference of the sum of pixels of areas inside the

rectangle, which can be at any position and scale within the original image. Linear feature

calculation of characteristics of image pixel rectangle that covers the entire feature consists

of two white stripes and black stripe.

Figure 1. Haar-Like Features

Haar feature defines a group of feature detection operator. The detector is a

sliding window algorithm. Whether training or testing, the problem of how to

calculate feature value of the current image must be solved. In a 36 36 window

arbitrary permutation generate hundreds of thousands features at least. The

computation for these features is very huge, so the integral image method was used.

Integral image can be defined as a matrix of the same size as the original image of a

two-dimensional lookup table. Each element of the integral image contains all of the

pixels in the upper-left area of the original image, which allows the calculation and

sum of the rectangular area of the image. In any location or scale, using only four

queries by the same amount of time to calculate the different features, greatly

improved speed.

Figure 2 shows the integral image [5] in the 1 point value for the regional gray level

A sum, denoted by A, in the 2 point value is A+B, in the 3 point value is A+C, in the 4

point value is A+B+C+D. Then the sum of gray level rectangular region D surrounded by

1-4 point can be expressed as A+C-B-D. As the name suggests, the value at any point

(,)x y in the summed area table is just the sum of all the pixels above and to the left

of (,)x y

'
'

(,) (', ')
x x
y y

I x y i x y





Moreover, the summed region can be computed efficiently in a single pass over the

image, using the fact that the value in the summed area table.

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 127

(,) (,) (1,) (, 1) (1, 1)I x y i x y I x y I x y I x y       

The calculation of arbitrary rectangular area and can be done in constant time.

() ' ()
() ' ()

(', ') () () () ()
A x x C x
A y y C y

i x y I C I A I B I D
 
 

   

Figure 2. Calculation of Feature

3. Adaboost Algorithm

Adaboost algorithm is a huge improvement on boosting model. It has been widely

used in the machine learning. The aim of algorithm is combining many weak

learning classifiers in order to produce a strong learning classifier. Basic steps are

shown as Table 1.

Table 1. Description of Adaboost Algorithm

Algorithm 1:AdaBoost Algorithm

1. given training sample set S , 1 1{(,),..., (,)}i iS x y x y And a

predetermined number of iterations. ix X Is the feature vector of sample，

{ 1, 1}iy    sample of category labels;

2. initializing the weights of training samples for

1 1/nd m , m For the total

sample, normalized weight;

3. by iterating to obtain the weak classifier, the number of iterations
 1,2...t T (T to

solve a number of weak classifiers)

1) use with weight distribution
 id the training data set to learn, get the

basic weak classifier, : { 1, 1}th x    ;

2) compute the th The classification error rate on the training data set

1

(())
N

t

t n t i i

n

d I h x y


 

3) the calculation of the weak classifier th weighting coefficients in the final

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

128 Copyright ⓒ 2015 SERSC

classifier in the set

11
ln

2

t
t

t









4) update the sample weights for the next iteration

1 exp(()) /t t

n n t i t i td d y h x Z   the said normalization

factor
1

exp(())
N

i

t t t i t

i

Z d y h x


 

4. combined weak classifier,
1

() ()
T

t t

t

f x h x


 , get final strong classifier

1

() (()) ()
T

t t

t

H x sign f x sign h x


 
   

 


4. Achieve Adaboost Algorithm

Adaboost algorithm is very time-consuming. We introduce CUDA [6] to

implement it. CUDA is an official name of GPGPU (General-purpose computing on

graphics processing units) from NVIDIA Company. GPUs can be used for general

treatment (not just graphics), unlike CPUs, GPUs has focused on a large number of

concurrent threads which run concurrently with the slower speed of flow structure,

rather than fast running a single thread.

Figure 3. Structure Difference Data of CPU and GPU

Under the framework of CUDA, a program is divided into two parts: the host and

device ends. The host end is executing on the CPU part, and the device end is in the

display chip implementation part. Device side program is also known as the "kernel".

Usually the host client program data will be copied to the graphics card memory, and

then by the display chip implementation of device client program, completed by the

host side program will result from the graphics memory retrieval. Under the

framework of CUDA, the smallest unit of execution time display chip is thread. The

whole flow of algorithm implementation using CUDA model, the following is the

complete steps to achieve the detector [7].

Image acquisition and preprocessing: the image is loaded into the CPU pre-

processing, using integral image to complete the Haar feature value calculation,

normalized, copy the integral image data and the weight information to GPU [8].

Downscaling and feature calculation: a kernel function was used in this step. In

the kernel function, each thread corresponds to a pixel. In order to downscaling and

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 129

calculate the feature value, a lot of disorder operation on the sample data were

needed, the integral image data were stored in the Texture Memory.

Cascade weak classifier computation phase [9]: this phase includes random

memory read and write operation. The operation is not very suitable for CUDA

model, here we have to know about several CUDA model type, Global Memory,

Texture Memory and Shared Memory. Texture Memory is a read-only memory for

data quantity of random data access is larger or non alignment access, also has good

acceleration effect. The speed of Shared Memory has fast i/o operation. In the

process of our experiment for different data with different storage methods.

Image acquisition and
preprocessing

Downscaling and feature
calculation

Cascade weak classifier

Strong classifier

End the
training

Figure 4. The Steps of Framework

5. Experiment and Result

INRIA is a database of pedestrian detection which is the most commonly used. It

contains a variety of light environment. The training set has 2416 negative samples

and 1218 positive samples. The testing set has 1126 positive number and 453

negative samples. All samples are normalized for size. In order to make up for the

lack of training samples, the mirror image transforms processing to sample.

28320 characteristics were selected. Table 2 shows the time when training a weak

classifier with training samples in different conditions. The number of samples is

5240. The time of training classifier is 22.2s in GPU platform, but when with CPU

it’s 33.3s. When the training sample number is 28320, the optimal acceleration

training the whole classifier on the platform of GPU phase on CPU platform reaches

more than 5.4 times.

Table 2. The Time for Calculate Final Classifier with Adaboost Algorithm

Sample Num CPU(s) GPU(s) Speedup

5240 33.3 22.2 1.5

7460 56.3 25.6 2.2

9800 74.3 28.6 2.6

12400 107.1 30.6 3.5

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

130 Copyright ⓒ 2015 SERSC

16800 128.8 32.2 4.0

23040 147.4 34.3 4.3

28320 208.4 38.6 5.4

The test results show that CUDA model is adopted to train the optimal weak

classifiers to form a strong final classification relative in real-time pedestrian

detection than with the CPU, the performance is improved by nearly 5 times.

Accuracy: the image size for our experiment is 320 240 . When detecting an

image, we need testing them one by one from different scales and different positions.

For the different scales detection, this choice of scaling of detector instead of scaling

of the image itself. In any scale, characteristics can be obtained by the same

situation. In the training, the window size is 16 32 , every time 1.25 times has best

detection.

The Caltech Pedestrian Dataset consists of approximately 10 hours of 640x480

30Hz video taken from a vehicle driving through regular traffic in an urban

environment. In this work we use our method to detect pedestrian on this datasets.

The result shows in some videos the method gets the good results and less error

detection. In some cases the method has error detection that detect the other things to

be pedestrian. But the accuracy rate of this method is very high on real human.

Figure 5. The Steps Results of Pedestrian Detection

In the process of experiment, there are some false positives and undetected

images. Here we compare the detection results. In the GPU treatment and CPU

treatment under the condition of AdaBoost algorithms, on the platform of GPU

classifier, in the training process that speed is increased at the same time, keep

the good generalization ability and strong robustness.

6. Conclusions

Firstly, a Haar-like feature was employed as the feature vector and integral image

for downscaling. Adaboost algorithm was used to build the strong classifier,

when the datasets become larger, the detection become time-consuming under the

CPU architecture. CUDA framework was introduced to improve the speed of

detector. The experimental results show when the sample size of 19 19 , the number

of samples for training was 28320, the accelerated ratio up to 5.4 times, efficient

improved the speed of classification. By contrast the effect of training result with

CPU and GPU. Under the classifier based on parallel Adaboost, we can see the

training speed is increased under the CUDA framework, at the same time keep a

better classifier effect. In the future work we focus on the load balance and data

partition under CUDA framework to improve the detection.

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 131

Acknowledgements

This paper is supported by Foundation of Science and Technology Commission of

Shanghai Municipality under Grant No. 14590500500, Natural Science Foundation

of Shanghai under Grant No. 15ZR1415200, and Young University Teachers

Training Plan of Shanghai Municipality under Grant No. ZZSD13008. We gratefully

acknowledge and thank those who provided comments and suggestions. The

anonymous reviewers and the editor of this paper are also acknowledged for their

constructive comments and suggestions. I’d like to express my sincere thanks to all

those who have lent me hands in the course of my writing this paper.

References

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proceedings

of the 2001 IEEE Computer Society Conference on. IEEE, (2001), vol. 1, pp. 511-518.

[2] Y. Freund, R. Schapire and N. J. Abe, “A short introduction to boosting”, Journal-Japanese Society for

Artificial Intelligence, vol. 14, (1999), pp.771-780.

[3] N. Dalal and B.Triggs, “Histograms of oriented gradients for human detection, Computer Vision and

Pattern Recognition”, IEEE Computer Society Conference on. IEEE, no. 1, (2005), pp.886-893.

[4] P. Dollár, Z. Tu and P. Perona, “Integral Channel Features”, British Machine Vision Conference, vol. 2,

(2009), pp.5-16.

[5] E. J. Tapia, “A note on the computation of high-dimensional integral images”, Pattern Recognition

Letters, vol. 32, no. 2, (2011), pp.197-201.

[6] M. Garland, S. Le Grand and J. J. Nickolls, “Parallel computing experiences with CUDA”, IEEE micro,

no. 4, (2008), pp. 13-27.

[7] B. Bilgic, B. K. P. Horn and I. Masaki, “Fast human detection with cascaded ensembles on the GPU”,

Intelligent Vehicles Symposium (IV), IEEE, (2010), pp.325-332.

[8] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object detection”, Image

Proceedings, 2002 International Conference on. IEEE, vol. 1, (2002), pp.900-903.

[9] J. Friedman, T. Hastie and R. J. Tibshirani, “Additive logistic regression: a statistical view of boosting”,

the annals of statistics, vol. 28, no. 2, (2000), pp. 337-407.

Author

Chongchao Cai, is a PhD candidate in graduate students in School

of Computer Engineering and Science, Shanghai University. His

research interests include computer vision, machine learning,

Pedestrian Detection.

International Journal of Database Theory and Application

Vol.8, No.6 (2015)

132 Copyright ⓒ 2015 SERSC

