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Abstract 

Particle swarm optimization (PSO) is a population-based stochastic optimization originat- 

ing from artificial life and evolutionary computation. PSO is motivated by the social behavior 

of organisms, such as bird flocking, fish schooling and human social relations. Its properties 

of low constraint on the continuity of objective function and ability of adapting to the dynamic 

environment make PSO become one of the most important swarm intelligence algorithms. 

However, compared to the various version of modified PSO and the corresponding applica- 

tions in many domains, there has been very little research on the PSO’s convergence 

analysis. So the current paper, to begin with, elaborates the basic principles of standard PSO. 

Then the existing work on the convergence analyses of PSO in the literatures is thoroughly 

surveyed, which plays an important role in establishing the solid theoretical foundation for 

PSO algorithm. In the end, some important conclusions and possible research directions of 

PSO that need to be studied in the future are proposed. 
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1. Introduction 

Particle swarm optimization is a swarm-based evolutionary algorithm. PSO is first 

introduced by Eberhart and Kennedy and used for optimization of continuous non-linear 

functions [1-3]. It is similar to other population-based evolutionary algorithms in that the 

algorithm is initialized with a population of random solutions, such as ant colony optimiza- 

tion (ACO) and genetic algorithms (GA). It is unlike most of other population-based 

evolutionary algorithms, however, in that PSO is motivated by the simulation of social 

behavior instead of survival of the fittest, and each candidate solution is associated with a 

velocity [4]. Due to the convenience of realization and promising optimization ability, PSO 

has been paid much attention to by researchers since its advent. So far, PSO has been 

successfully applied in solving various optimization problems, such as function optimization, 

training artificial neural networks [5], pattern classification [6] and fuzzy system control, etc. 

particularly for the problems under the multidimensional and dynamic conditions. Therefore, 

to some extent, PSO is not only suitable for science researches, but also for engineering 

applications particularly. Over the years, researches of PSO have been focused on two 

aspects. The first one is the performance improvement of PSO by modifying its parameters, 

increasing population diversity and fusing with other optimization methods. The second is the 

applicati- ons of PSO in different areas. In comparison with the hot discussion on the two 
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aspects mentioned above, little attention has been paid to the theoretical analysis and proof. 

However, it is very important to understand the PSO’s theoretical foundations, which can 

further help to master how PSO works. So in this paper, the convergence analysis of PSO is 

summarized systematically. Meanwhile, some important conclusions and research directions 

of PSO that need to be studied in the future are proposed. 

The remainder of the text is organized as follows. Section 2 introduces the standard PSO. 

In Section 3, the existing convergence analyses of PSO algorithm are summarized in detail by 

six subsections, including convergence analysis with constriction coefficient, limit, different- 

tial equation, matrix, difference equation and Z transformation. Finally, the paper ends in 

obtaining some important conclusions and pointing out some possible future research 

directions to be studied in Section 4. 
 

2. Standard PSO 

PSO is originally designed by Kennedy and Eberhart [1]. It is inspired by natural concepts 

such as bird flocking and fish schooling. In PSO system, each candidate solution is called a 

particle, each particle moves in the search space with a velocity that is dynamically adjusted 

according to the corresponding particle’s experience and the particle’s companions’ experien- 

ce. Mathematically, the particles are manipulated according to the following equations [2]: 

1 1 2 2( 1) ( ) [ ( ) ( )] [ ( ) ( )]id id id id gd idv t v t c r p t x t c r p t x t                  (1) 

     ( 1 ) ( ) ( 1 )i d i d i dx t x t v t                                             (2) 

where c1 and c2 are positive constants, called acceleration coefficients. r1 and r2 are two 

random functions in the range [0,1]. ω is the inertia weight, it has characteristics that are 

reminiscent of the temperature parameter in the simulated annealing (SA). A large inertia 

weight facilitates a global exploration while a small inertia weight facilitates a local 

exploitation. The i-th particle is represented as Xi=(xi1,xi2,…,xiD). The best previous position 

(the position giving the best fitness value) of the i-th particle is recorded and represented as 

Pi=(pi1,pi2,…,piD).The index of the best particle among all the particles in the population is 

represented by the symbol g. The rate of the position change (velocity) for particle i is 

represented as Vi=(vi1,vi2,…,viD). During the update, the maximum velocity of each dimension 

of a particle is restricted to vmax, whose coordination of every dimension is also restricted to 

the permission scope. D represents the dimension of the search space. Figure 1 illustrates the 

moving principle of particles in the swarm. 
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Figure 1. Moving principle of particles 
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In equation (1), the first part is the previous velocity of the particle. The second is the 

“cognitive” part, representing the exploiting of its own experience, where c1 is individual 

factor. And the third denotes the “social” part, representing the shared information and mutual 

cooperation among the particles, where c2 is societal factor. Alternatively, the procedure of 

the standard PSO algorithm is illustrated as follows. 
 

Algorithm 1: Procedure of the Standard PSO Algorithm 

1. //Initialization; 

2. for i=1 to the swarm size do 

3.    Initialize Xi within the search range of (Xmin, Xmax) randomly; 

4.    Initialize Vi within the velocity range of (Vmin, Vmax) randomly; 

5.    Pi= Xi; 

6. end for 

7. Evaluate each particle;  

8. Identify the best position Pg; 

9. //Loop; 

10.  While (stop criterion is not met) do 

11.        for i=1 to the swarm size do 

12.           Update the particle with equation (1); 

13.           Update the particle with equation (2); 

14.           Evaluate the fitness(Xi(t+1)); 

15.           if fitness(Pi(t+1))< fitness(Xi(t+1)) then 

16.             Update Pi(t+1); 

17.           end if 
18.           if fitness(Pg(t+1))< fitness(Pi(t+1)) then 

19.             Update Pg(t+1); 

20.           end if 

21.         end for 

22.  end while 
 

3. Convergence Analyses of PSO 

Since PSO is put forward in 1990s, it has become the focus in optimization community and 

has been widely applied in many fields. Much attention has been paid to the improvements of 

PSO itself, such as the improvement of its parameters, including the inertia weight and 

convergence factor, the improvement of the update formula based on the velocity-position, 

the improvement based on the topology of particle swarms, the improvement based on the 

evolutionary mechanism of the genetic algorithm, including selection, crossover and 

mutation, and the improvement based on the integration of other approaches, viz., the 

so-called hybrid soft computing (HSC). However, very little research on the PSO’s 

convergence has been studied so far, which plays a crucial role in establishing the solid 

theoretical foundation for PSO algorithm. So this paper, from another perspective, thoroughly 

reviews and analyzes the convergence of PSO in the existing literature, the goal is to provide 

references and suggestions for PSO researchers to establish a solid theoretical basis. The 

details of them will be described in the following subsections respectively. 

 

3.1. Convergence Analysis with Constriction Coefficient 

The parameters appearing in equations (1) and (2) are primarily analyzed by Clerc in [7]. 

Although there are obvious defects, it is very important for researchers to study the 

convergence of PSO. The highly simplified deduction process is as follows. First, redefining 

Pid←(c1pid+c2pgd)/(c1+c2), then equation (1) can be simplified as vid (t+1)=vid 
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(t)+c(pid(t)-xid(t)), where c=c1+c2. At this time, the PSO system can be further simplified by 

considering a one-dimensional problem space and again by reducing the population to one 

particle. Meanwhile, assume that both Pgd and c are constants. Then equations (1) and (2) can 

be represented as follows (p and c are constants): 

( 1) ( ) ( ( ))

( 1) ( ) ( 1)

v t v t c p x t

x t x t v t

   


   
                            (3) 

The constriction condition of particles’ stability can be obtained via the stable analysis of 

equation (3), and the important conclusion is drawn as below. When the parameters 

appearing in equations (1) and (2) meet the constriction condition,  

1 1 2 2( 1) [ ( ) ( ( ) ( )) ( ( ) ( ))]id id id id gd idv t K v t c r p t x t c r p t x t              (4) 

where 22/ | 2 4 |K c c c    . If c=c1+c2>4, then the particle’s trajectory in the PSO 

system is stable under these assumption conditions. 

 

3.2. Convergence Analysis with Limit 

The relation between the convergence and the variance of the population’s fitness is 

manifested in [8]. First, defining the variance of the population’s fitness as below:  

2

1

2 1












 


N

i

avgi

f

ff

N
                               (5) 

where N represents the number of particles, fi is the fitness of the i-th particle, favg is the 

current average fitness of the swarm, f is the normalized calibration factor to confine σ
2
. The 

value of f is derived from: 

max{1,max{| |}}, [1, ]i avgf f f i N                     (6) 

The definition of σ
2 
shows that it presents the convergence degree of all the particles in the 

swarm. A smaller σ
2
 presents a better convergence. On the contrary, the particle swarm is still 

in the random searching. Then the particle’s convergence in the swarm can be defined as:  

lim ( )
t

X t P


                                        (7) 

where X(t) denotes the position of a particle at time t, and p is the arbitrary position of the 

whole searching space. This definition demonstrates that the particles will finally settle in 

some fixed position p in the searching space. Alternatively, the following conclusion can be 

derived through strict mathematical derivation by [9]. 

lim ( ) (1 )
t

X t pBest gBest 


                       (8) 

where α=c1/(c1+c2), c1 and c2 are acceleration coefficients in equation (1), pBest denotes the 

individual extremum of this particle while gBest is the global extremum of the particle 

swarm. 

Based on the conclusion given above, Kennedy and Eberhart [1] further demonstrate that if 

PSO plunges into premature convergence or global convergence, the particles in the swarm 

will gather in one or some special position, and the variance of the population’s fitness is zero 
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3.3. Convergence Analysis with Differential Equation 

The relation between the inertia weight and the particle’s velocity is described in [10]. Like 

other methods of convergence analysis, first, supposing that the problem space is one- 

dimensional and there is only one particle in the swarm. Then pi=pg can be obtained. At the 

same time, assuming that Φ1=r1c1, Φ2=r2c2 and Φ=Φ1+Φ2. yi can be denoted by pi-xi. Thus 

equations (1) and (2) can be simplified as: 

( 1) ( ) ( )v t v t y t                                       (9) 

 ( 1) ( ) (1 ) ( )y t v t y t                                  (10) 

The following formula can be derived by iterating equations (9) and (10) and eliminating 

variable y:  

( 2) ( 1 ) ( 1) ( ) 0v t v t v t                            (11) 

Making equation (11) be continuous and a second-order differential equation is derived:  

2

1 2 1 22
( ) ( ) ( ) 0

v v
In e e In e In e v

t t

 
  

 
                     (12) 

where e1 and e2 are the roots of the quadratic equation λ
2
+(φ-1-ω)λ+ω=0. More precise- 

ly,
1 ( 1 ) 2e       ,

2 ( 1 ) 2e       where 2( 1 ) 4       .Thus, the general 

solution of the differential equation (12) is as follows: 

1 1 2 2(t) t tv k e k e                                      (13) 

By further reasoning,  

1 1 1 2 2 2( ) ( ) ( )t ty t k e e k e e                          (14) 

where k1=(-φy(0)-(ω-e2)v(0))/(e2-e1), k2=(φy(0)+(ω-e1)v(0))/(e2-e1). From equations (13) and 

(14), if t tends to infinity and max (|e1|, |e2|)<1, then v(t) and y(t) will tend to infinity. That is 

to say, the PSO converges at the time. If ω>0.5φ-1, then max(|e1|, |e2|)<1; While if ω>0.5× 

(c1+c2)-1, then ω>0.5φ-1 holds and the PSO do converge. 

By comparison, the convergence analysis method referred in [10] is actually very similar to 

that in [7]. Their slight differences mainly lie in two aspects. The first one is that ω in [7] is 

set to 1 whereas in [10] employed by itself. The second is that the convergence condition in 

[10] is directly given while in [7] the basic explicit representation, a posteriori proof, general 

implicit and explicit representations, and the transformation from ER to IR are described in 

detail respectively. 

3.4. Convergence Analysis with Matrix 

On the basis of [11] for the convergence analysis of particle’s trajectory, the influence of 

particle’s velocity on the convergence is further discussed in [12]. First, assume that 
 
, ( ) ( 1,2)
k

i j kt c rand k    , #

, ( ) ( )i j idx t p t (i=1,2,…,N) and *( ) ( )j gdx t p t .Given that they are all 

constants, then equations (1) and (2) can be represented as follows: 

(1) # (2) *

, , , , , , ,( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))i j i j i j i j i j i j j i jv t v t t x t x t t x t x t           (15) 
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   , , ,( 1) ( ) ( 1)i j i j i jx t x t v t                                         (16) 

By eliminating the velocity parameters in formulas (15) and (16), we can get, 

(1) (2) (1) # (2) *

, , , , , , , ,( 1) (1 ) ( ) ( 1)i j i j i j i j i j i j i j i j jx t x t x t x x                  (17) 

Let           

       















 



100

001

1 *2

,

#

,

1

,

2

,

1

, jjijijijiji xx

A



 

Then the homogeneous matrix of equation (17) can be written: 

     

, ,

, ,

( 1) ( )

( ) ( 1)

1 1

i j i j

i j i j

x t x t

x t A x t

   
   

  
   
      

                                   (18)  

Thus, the eigenpolynomial of the coefficient matrix in formula (18) can be obtained by the 

following equation:  

(1) (2) 2

, ,(1 )( (1 ) )i j i j                                        (19) 

It has three roots, viz. λ=1, (1) (2)

, , , ,(1 ) / 2i j i j i j i j         and (1) (2)

, , , ,(1 )/2i j i j i j i j          

respectively. Here (1) (2) 2

, , ,(1 ) 4i j i j i j         . So the convergence theorem of PSO is 

derived as follows. Viz., PSO is convergent if and only if max(||α||, ||β||)≤1. Further, the 

corollary of the particle’s velocity convergence is obtained, i.e., if PSO is convergent, then 

the particle’s velocity decreases to zero continuously or holds just as its initial value during 

the whole searching process. 

3.5. Convergence Analysis with Difference Equation 

The convergence analysis of PSO is discussed in [13] by using difference equation. To 

begin with, simplifying the problem to be a one-dimensional space, assuming the best 

previous position of each particle and the best current position of the swarm are fixed, and 

denoted by pb and gb, respectively. c0, c1 and c2 are constants. Note that c0, actually, is 

equivalent to the inertia weight ω in equation (1).Then the equations (1) and (2) can be 

simplified as follows: 

0 1 2( 1) ( ) ( ( )) ( ( ))b bv k c v k c p x k c g x k                         (20) 

  ( 1) ( ) ( 1)x k x k v k                                            (21) 

As a result,
0 1 2 0 1 2( 2) ( 1) ( 1) ( ) b bx k c c c x k c x k c p c g         , that is to say, 

0 1 2 0 1 2( 2) ( 1) ( 1) ( ) b bx k c c c x k c x k c p c g                    (22) 

Obviously, equation (22) is a non-homogeneous difference equation with a second order 

constant coefficient. Its characteristic equation is λ
2
+(-c0+c1+c2-1)λ+c0=0. There exist three 

cases for solving it. 
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 If 2

0 1 2 0( 1) 4 0c c c c        , then
1 2 0 1 2( 1) 2c c c          , 

0 1 2(1 ) (0) (0)
( ) (0) (0) kb bc x c v c p c g

x k x x k 


      
    

  
. 

 If 2

0 1 2 0( 1) 4 0c c c c        , then
1,2 0 1 2( 1 ) 2c c c       ， 

      
1 2 2 1 2 2 1 1

1 2

2 1 2 1

( ) k kb bc p c g b b b b
x k

c

 
 

   

  
  

 
. 

(Let 1 1 2(0) ( )b bb x c p c g c   , 2 0 1 2 1 2(1 ) (0) (0) ( )b b b bb c x c v c p c g c p c g c       ) 

 If 
2

0 1 2 0( 1) 4 0c c c c        , then 1,2 0 1 2( 1 ) 2c c c i       , 

1 2 2 1 2 2 1 1
1 2

2 1 2 1

( ) k kb bc p c g b b b b
x k

c

 
 

   

  
  

 
. 

(Let
1 1 2(0) ( )b bb x c p c g c   ,

2 0 1 2 1 2(1 ) (0) (0) ( )b b b bb c x c v c p c g c p c g c       ) 

It is clear that, when k tends to infinity, the convergence conditions of the three cases 

described above are ||λ1||<1 and ||λ2||<1.And the convergent domain of the swarm is the 

delta-shaped region consists of c0<1, c1+ c2>0, 2c0- c1- c2+2>0. Figure 2 graphs the converge- 

nt domain, which is the left-hand blank delta-shaped region. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Convergent domain in ref. [11]   Figure 3. Convergent domains in refs. [7, 14] 

3.6. Convergence Analysis with Z Transformation 

The stability of the particle’s trajectory is studied in [14] via Z transformation. In order to 

analyze and express conveniently, first, the problem space is simplified to be one-dimension, 

and the c1×r1 and c2×r2 in equation (1) are denoted by Φ1 and Φ2, respectively. What is more, 

only one particle is considered here. And assuming the best previous position of each particle 

and the best current position of the swarm, denoted by pi and pg respectively are all fixed. 

Then the motion state of the i-th particle can be represented as follows: 

 1 2( 1) ( ) ( ) ( )i i i i g iv t v t p x t p x t                             (23) 
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( 1) ( ) ( 1)i i ix t x t v t                                            (24) 

Thus, the following equation can be derived via substituting between the equations (23) and 

(24). 

1 2( 2) ( 1) ( 1) ( ) 0i i iv t v t v t                               (25) 

As can be seen from the formula (25), the process of the particle’s velocity change is a 

second-order difference equation. Similarly, the process of the particle’s position change can 

be obtained as follows, and it is also a second-order difference equation. 

1 2 1 2( 2) (1 ) ( 1) ( )i i i i gx t x t x t p p                         (26) 

 Executing Z transformation on equation (25), then we can get, 

  
2 2

1 2 1 2( ) ( (0) (1) ( 1) (0)) ( ( 1) )i i i iV z z v zv z v z z                    (27) 

where Φ1 and Φ2 are stochastic numbers and they are supposed to be constants so as to 

simplify the analysis. Thus equation (27) will become a linear system and its characteristic 

equation is: 

2

1 2( 1) 0z z                                            (28) 

Furthermore, substituting z= (μ+1)/(μ-1) into equation (28) and executing bilinear transforma- 

tion can lead to the following result, 

    
2

1 2 1 2( ) ( 2 2 ) ( 2 2 ) 0                               (29) 

From Routh criterion, the necessary and sufficient condition of a stable second-order linear 

system is that each coefficient of the characteristic equation is a positive constant. So the 

stable condition of formula (25) can be derived as below: 















022

01

0

21

21







                                        (30) 

Due to Φ1 and Φ2 are positive real numbers, and the pi and pg are assumed to be constants 

previously. Hence, the stable condition described by equation (30) can be further simplified 

as follows: 

                 









2122

01




                                          (31) 

When the strict unequal condition in (31) is satisfied, the velocity of a single particle will 

tend to zero. 

 Executing Z transformation on equation (26), as a result, 

3 2 2

1 2( ) ( (0) ( (1) ( 1) (0)) ( (0) (1))) (( )( 1))i i i i i g i iX z z x z x x z p p x x z z z                 (32) 

where ζ=φ1+φ2-1-ω. Then the characteristic equation of the linear system corresponding to 

equation (32) is given below,  
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2

1 2( ( 1) )( 1) 0z z z                                    (33) 

Similarly, substituting z= (μ+1)/(μ-1) into equation (33) and executing bilinear transforma- 

tion can lead to the result, 

2

1 2 1 2( ) (2 2 ) (2 2 ) 0                                (34) 

From equations (34) and (29), it is easy to see that there are same zero points for the 

characteristic equation corresponding to equations (32) and (27). Therefore, the stable 

conditions are same. i.e., the stable condition of the particle’s position change also is equation 

(31). When this condition is met, the position of a single particle will tend to be (φ1pi+φ2pg) 

/(φ1+φ2). 

Figure 3 graphs the comparison result of convergent domain in [14] and [7]. Note that the 

left-hand blank trapezoidal domain is derived form equation (33) in [14], which represents the 

convergent domain of a single particle, whereas the solid line is derived from the equation 
22/ | 2 4 |K        in [7]. Obviously, much larger convergent domain can be obtain- 

ed by [14] than that by [7]. 

3.7. Other Convergence Analyses 

Recently, Liu et al., [15] discuss the swarm intelligent model, i.e., the particle swarm based 

on its iterated function system. The dynamic trajectory of the particle is described based on 

single individual and the swarm algorithm is proved to be converged with a probability of one 

towards the global optimal. Fang et al., [16] propose quantum-behaved particle swarm 

optimization (QPSO) algorithm and discuss the convergence of QPSO within the framework 

of random algorithm’s global convergence theorem. Meanwhile, an improved particle swarm 

optimization algorithm is presented by Liang et al., [17] and its convergence is analyzed in a 

simplified one dimension. In addition, the convergence time of particle swarm optimization is 

analyzed on the facet of particle interaction [18], in which the theoretical analysis is 

conducted on the social-only model of PSO instead of on common models in practice. The 

theoretical results reveal the relationship between the convergence time and the level of 

convergence as well as the relationship between the convergence time and the swarm size. In 

the most recent years, Ren et al., [19] analyze the global convergence of PSO algorithm, in 

which the one-step transition probabilities of particle velocity and particle position are 

calculated as well as several properties about this Markov chain are investigated. And it is 

proved that the particle state space is non-recurrent and the PSO algorithm is not global 

convergent from the viewpoint of the transition probability. 
 

4. Conclusion and Expectation 

From the convergence analyses of PSO reviewed above, we can easily draw the following 

important conclusions. 

 In Subsection 3.1, the use of the constriction coefficient K can be viewed as a 

recommendation to the particle to “take smaller steps”, which makes the particles move 

toward the point P(v=0, x=(c1pid+c2pgd)/(c1+c2)) and tend to convergence at last. The 

convergence mentioned here obviously implies that the particle’s velocity=0. But the 

position x obtained here is not necessarily the convergent point that is wanted, particular- 

ly if the system is too constricted. 
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 In Subsection 3.2, the relation between the convergence and the variance of the 

population’s fitness is strictly derived by using limit. To a certain extent, it reflects the 

dynamic performance of PSO. However, it is difficult to distinguish premature converg- 

ence from global convergence only by the variance of the population’s fitness is zero. 

 In Subsection 3.3, the relation between the inertia weight and the particle’s velocity as 

well as its influence on the convergence of PSO is illustrated. As can be seen from the 

previous description, the problem space is assumed to be one-dimensional and only one 

particle is considered when the convergence of PSO is analyzed. In actual fact, there are 

a large number of particles and the real-world problems usually lie in three-dimensional 

space. 

 In Subsection 3.4, ( )

, ( 1,2)k

i j k  corresponds to the ci*rand (i=1,2) in equation (1). 

Whether the acceleration coefficients ci (i=1,2) are fixed or linearly change as the 

iterative number increases [20], ci*rand (i=1,2) are always variables. Meanwhile, 
#

, jix and *

jx correspond to pid(t) and pgd(t) respectively. They are all dynamic variables 

during the evolution process. However, all of them are supposed to be constants in the 

literature. 

 In Subsection 3.5, when the convergence of PSO is analyzed by using difference 

equation, like other methods used in above literatures, all of the variables appearing in 

equations (1) and (2) are assumed to be constants, and the problem space is viewed as 

one-dimensional. 

 In Subsection 3.6, when the stability of the particle’s trajectory is analyzed via Z 

transformation, the problem is simplified to be a second-order linear system under 

certain assumptions, and its stable condition is derived from the Routh criterion. 

In the light of the analyses given above, it is clear that the convergence analyses of PSO 

studied by many researchers are all under certain rigid assumptions. Although these assumpt- 

ions can simplify the problem models and then the models can be easily studied and analyzed 

by researchers. They, to a certain degree, restrict the convergence study of the PSO systems, 

even the establishment of the PSO’s theoretical foundations. 

PSO has been accepted widely as a potential global optimizing algorithm because of its 

convenience of realization and low constraints on the environment and objective functions, 

but there is still a great space for the research of the algorithm itself. So far, the mathematical 

proofs of PSO’s convergence, convergent velocity, parameter selection and robustness have 

not been proposed perfectly. Hence, how to study and analyze PSO by the ideas of limit, 

probability, evolution and topology in order to reflect the mechanism of how PSO works, 

which is also a highly desired subject that should be paid much attention to by PSO 

researchers. 
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