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Abstract 

Cloud storage offers clients great convenience to relieve them from heavy burden of 

storage and management, so an increasing number of clients choose to outsource their 

data to remote cloud providers. However, for clients, this entails a sacrifice of actual 

control of these files. Remote servers may suffer from disk failure for uncertain reasons or 

even delete rarely accessed data to sell these storages to other clients. Therefore, there’s 

a great necessity for clients to make sure that their data are well stored in remote servers. 

Numbers of remote integrity checking (RIC) schemes are proposed to solve issues above, 

including following up work Provable Data Possession (PDP) and Proofs of 

Retrievability (PoR), which can be applied in cloud auditing. This paper presents state-of-

the-art RIC schemes and makes a classification from the perspective of whether they 

support dynamic verifications, i.e., whether they can still be used to make verifications 

after clients modify, insert or delete files. In static verification schemes, we delve into the 

mechanisms and techniques used for integrity checking. For dynamic ones, we discuss the 

authentication structures that support dynamic operations. We also present several 

remarks to guide readers to a wide vision of data checking as conclusions and future 

work. 

 

Keywords: cloud storage, remote integrity checking, provable data possession, proofs 

of retrievability, dynamic updates 

 

1. Introduction 

With the development of computation enhancement of IT infrastructure in recent years, 

many clients choose to outsource their data to remote cloud servers because of their 

limited resource. They believe that remote servers can offer many favorable services: 1) 

remove burden of expensive storage and management from clients, 2) provide higher 

availability and scalability in comparison with clients and 3) enable clients to access their 

data in different places at any time. However, remote storages are out control of physical 

possession of clients. Remote servers may fail to store clients’ data correctly for 

accidental reasons (adversary attacks) or intentional ones (e.g. they may delete rarely 

accessed data to save storage to sell these storages to other clients) [1]. Dishonest servers 

may convince clients into believing that their data are well stored in the server to hide 

their misbehavior for the sake of reputation. Once such incidents happen, it is always too 

late for clients to realize the loss of data when they retrieve them. Thus, it’s necessary for 

clients to know whether their data are well stored in the remote servers via some 

mechanisms rather than routine retrieval. 
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A naive solution is to download outsourced files and check their intactness by 

cryptography measurement regularly [2]. Obviously, this is not practical at all, especially 

for large files in the cloud environment. To solve this problem, some literature introduced 

the concept of Remote Integrity Checking (RIC) [3]. Later provable data possession 

(PDP) [1] and proofs of retrievability (PoR) [4] are proposed to enable clients to check the 

integrity of remote files without retrieving files by regularly challenging the remote server 

to provide a proof of data possession. PDP [1] use homomorphic tags based on RSA to 

make integrity checking rather than the file itself. Original PoR make verifications by 

comparing responses from servers and prestored answers or “sentinels”. In such a way, 

we achieve less communication overhead and the verification only needs a small and 

constant number of computations for the auditor. Following researches extend the original 

schemes to be equipped with some preferable properties, such as high efficiency [5, 6, 7, 

8], public verification [5, 8, 9], unbounded use of queries [1, 5, 10], dynamics supporting 

[9, 10, 11, 12, 13] and retrievability of data [4, 5, 14], which are just our designing goals. 

Among those above, one major focus is to design a PDP/PoR scheme that supports 

dynamic operations, enabling it to be used in dynamic settings, i.e., the scheme can also 

be used when clients modify, insert or delete their files, not only for static settings like 

libraries and scientific dataset [1, 3, 4, 5]. Generally, they apply authenticated structures, 

such as hash trees, skip lists, index hash tables to support dynamic settings. In this paper, 

we discuss several classical remote integrity checking schemes in detail and category 

them by the dynamic structure they use. 

To verify remote storage, most of these schemes use tags [1, 3, 8, 10, and 14] that are of 

smaller size to represent blocks, which reduces communication bandwidth massively. 

Clients must generate secure tags, which mean these tags are unforgeable by anyone 

except the original maker. To help readers to grasp the idea of PDP/PoR, we throw light 

upon the block tags/signatures here in advance [13]. Usually in a PDP/PoR, auditors 

authenticate the block tags instead of original file blocks during the verification, but this 

does not mean we verify tags themselves only for the fact that tags cannot fully represent 

data blocks and the server may store tags well but not the file data. These tags will be 

used in the computation of verification and if in dynamic settings, they must maintain 

fresh and legitimate, even after update operations [13], otherwise it will fail to pass 

auditors verification. Note that some literature uses block signatures [5, 9, 11] to make 

verifications, which actually play the same role as tags. 

Our paper is organized as follows: Section 1 introduces the background of cloud 

storage, the motivation of verifying remote files and some basic ideas of verification 

schemes. Section 2 shows two kinds of generic verification models, i.e., two-party model 

and three-party model, depending on whether the verification process is executed by 

clients themselves. In Section 3, we discuss some classical PDP/PoR schemes and analyze 

their mechanisms and techniques of making integrity verification after lucubrating 

classical literature on remote integrity checking. And Section 4 presents classical schemes 

that support dynamic verifications, which means these schemes can also work after clients 

append (insert), modify or delete their files. In Section 5, we compare the efficiency and 

performance of several typical remote checking schemes. And section 6 provides some 

remarks as conclusions and our future work.  

 

2. Generic Verification Models 

Having studied existing verification systems, we summarize them into two types of 

models according to the number of parties in the models, namely two-party and three-

party models. Figure 1 shows a composition of the two models and depicts workflow for 

both models. Note that there’re multiple clients, servers or even auditors in the models. 
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Figure 1. Generic Remote Verification Models 

If a client himself verifies the remote storage, we get the two-party model, which 

contains two components: a client (auditor) and a server (prover). The client holds files 

and outsources them to the remote untrusted servers and later verifies the storage 

regularly. If the client delegates verification to a trusted third party (TTP) to relieve itself 

from heavy burden, then we get the three-party model. It mainly consists of three parties: 

a client, a server (prover) and TTP (auditor). The client outsources its data to the remote 

server and the auditor TTP checks the server for the client. In this model, the client 

generates metadata (signatures or tags) of his data and shares some public information 

with other two parties. Then the client deletes the local copy and TTP can verify whether 

the remote servers store the owner’s files correctly when needed. The verification 

procedure mainly has four phases: Initialization, Challenge, Proof and Verification. 

Initialization is the procedure of system setup including the pre-processing of files and 

related start work of each party. When verifying, TTP sends challenges to the server, if 

the server can reply with a valid proof, the TTP can be convinced that the remote server 

behaves well and stores the data correctly. 

Clients’ remote files are out of their own physical control, so the servers may behave 

lazily or even maliciously for the sake of commercial benefit, e.g., they may not update 

corresponding files as clients requires to save storage and computation resources. When 

asked to make a proof, the server just sends previous proofs or regenerate proofs without 

updating files. When the files are corrupted or even lost, the server could still forge the 

metadata of the blocks and generate corresponding proofs to deceive the auditor. It can 

also be malicious, who may delete the outsourced files deliberately or even collude with 

adversaries for a certain purpose. Therefore, it is crucial to guarantee the intactness of 

outsourced data in the remote servers, and no sensitive information should be exposed to 

the auditor (in a three-party model) and outsiders when the auditing is executed. Note that 

in our model, the auditor is honest but curious, e.g., it behaves honestly during the 

verification but may be curious about data from the client and the server. Therefore, files 

data should not be leaked to the TTP during the verification. Our designing goals are to 

guarantee the integrity of remote files and avoid attacks above. 

 

3. Classical Static Schemes 

Dewarte et al. [3] first introduced the notion of “remote integrity checking” (RIC) to 

verify whether remote servers keep outsourced data intact (not delete or tamper with the 

data) without retrieving the original files. Follow up work, including PDP [1] and POR 

[4], provides us with formal models and techniques to verify the cloud storage in a more 
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efficient way. We’ll delve into some classical static schemes in detail and classify them 

based on the 

Techniques they use to verify storage. 

 

3.1. MAC-Based Schemes  

In cryptography, a message authentication code (MAC) is a short piece of information 

used to authenticate a message to provide integrity. It is often generated by a keyed hash 

function which allows auditors to detect any changes of the message content. In those 

MAC-based schemes, the client pre-computes MACs of files (or blocks) and sends these 

MACs and corresponding keys to the server. In the verification phase, the client sends a 

selected key to the server and waits for a corresponding reply. Then the server computes 

and sends MAC back to the client, which will later be checked by comparing with the 

pre-stored MACs. If they equals, the server are believed to store files well. 

Juels and Kaliski [4] first presented the formal definition of Proof of Retrievability 

(POR) where the original file is first encoded, divided into blocks, and encrypted, and 

then some randomly selected blocks (so-called sentinels) will be embed into the encrypted 

file. These sentinels are indistinguishable from other blocks and disguise themselves in 

the file. When verifying, the auditor specifies the positions of some sentinels and send this 

challenge to the server, waiting for the corresponding reply. An obvious drawback is that 

the number of sentinels is limited (each challenge needs one), therefore times of 

challenging the server is limited.  

Shacham et al. [5] proposed Compact Proofs of Retrievability (CPoR) for batch 

verification of multiple data blocks. In their scheme, the file data are encoded and divided 

into n blocks. And the client chooses a number pZ  randomly and keeps a PRF 

(Pseudo-Random Function) key PRFk  to compute the MAC value for each block as a tag 

PRFkii fm   . Note that i  is the signature for the ith data block mi. Then these MACs 

will be sent to the server together with the data blocks mi. When verifying the server, the 

auditor (client) first sends a challenge Qiivichal ),(:  to the server, where pQii Zv  )(  is 

a random coefficient? Upon receiving the chal, the server computes proofs of storage 

using chal : 



Qiivi

iiv
),(

  and 



Qiivi

ii mv
),(

 , and then sends them back to the 

auditor. After receiving the proofs, the auditor computes whether 


Qvii

ki ifv PRF

),(
)(  holds. 

 

 
 

Figure 2. Challenge-Response Verification in CPoR-I 

Here, there’re two remarks should be noted: (1) scheme above does not support public 

verification so the auditor is the client itself; (2) an improvement by further dividing a 
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block into s sectors to give a tradeoff between storage overhead and response length can 

be done. Figure 2 shows the verification processes of CPoR-I. 

 

3.2. RSA-Based Schemes  

Responses taking advantage of homomorphism can reduce the bandwidth a lot in the 

"challenge-response" protocol and RSA-based homomorphic hash function can be used to 

verify data possession in remote servers. In Sebe et al. [6], the client generates an RSA-

based homomorphic hash function for each data block. The client stores homomorphic 

hash values, which is not suitable for a TTP to make verifications. In [3], homomorphic 

tags of files are used to make integrity verification. Initially, the client randomly chooses 

a number )11(  N , computes homomorphic tag NT
m

mod  and then sends 

file m together with the corresponding tag to the server. When verifying the integrity of 

file m, the auditor challenges the server with chal: NC
r

mod , where )1,1(  Nr  

is a random value. Upon receiving chal, the server computes a corresponding proof 

NCP
m

mod  and sends it back to the auditor. Then the auditor checks whether 

PNT
r

mod  holds. Though the use of homomorphic tags is more efficient, the client 

still needs to store tags. 

Ateniese et al. [1] first formally defined a PDP (Provable Data Possession) scheme, 

which uses RSA-based homomorphic tags and sampling checking to reduce bandwidth. In 

their protocol, file data are stored in blocks and the client generates pk=(N,g) and 

sk=(e,d,v) that satisfies ed=1mod p’q’, where e is a large secret prime and v is a random 

number. Then the data owner generates tags for all blocks mi: NgWhT
dm

ii
i

mod))(( , 

where ivW i ||  and then sends }}{,}{,{ 11 niinii Tmpk   to the server. Afterwards, 

the owner can delete the original data and tags niiT 1}{  locally. 

In this scheme, k1 is used to select c block indices )(,, 11 css sjsii c  to be checked, 

which prevents the server pre-storing combination values of blocks. k2 is used to generate 

coefficients )( 1 cj sjsa   that guarantees each block is intact. When verifying remote 

storage, the auditor (client) sends a challenge chal ),,,( 21 sgkkc  to the server, 

where
s

s gg   Then the server computes proofs ),( T , where 

NgWhWhTTT
dmamaa

i

a

i

a

i

a

i

c
iscisc

c
ss

c

c
ss

mod))()(( 1
11

1

1

1



 and

)mod( 1
1

NgH c
iscis

s

mama 

 , and sends to the server. The auditor then verifies whether  

it holds. If so, the auditor accepts its proof and believes the remote files are well stored, 

and vice verse. Figure 3 shows the challenge-response procedure. 

 

 

Figure 3. Challenge-Response Verification in PDP 
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The designing of this scheme is quite exquisite (e.g., Wi and gs), avoiding several 

intractable issues compared with other auditing methods (e.g., elliptic curve based 

methods) and its idea of homomorphic tags has a great influence on followup works. 

However, this scheme has to deal with exponential computation and does not support 

public verification, but their another version manage this in [1]. 

 

3.3. BLS-Based Homomorphic Methods 

The use of BLS (bilinear signature) can also compact responses to reduce 

communication bandwidth, however, it is not suitable for variable sized blocks [9] and the 

wanted groups are always limited in number in reality. Let G1, G2 and GT be three 

multiplicative groups with the same prime order p. A bilinear mapping e has following 

properties: 

- Bilinearity:
abba

vuevue ),(),(  for all 21, GvGu   and pZba , . 

- Non-degeneracy: There exists 21, GvGu  , such that Ivue ),( , where I is the 

identity element of GT. 

- Computability: e can be efficiently computed. 

Shacham et al. [5] proposed a CPoR using BLS-based homomorphic tags (the second 

scheme), which supports public verification compared with their first scheme. Similar to 

schemes above, the client computes corresponding signature (tag) for block mi as 
xm

i
i

uiHT ])([ , where u is a generator of G, and x is a private key. Here, public key g
x
 

(g is another generator) is distributed to TTP. Then the client sends blocks mi and 

corresponding tags to the server. When verifying, the auditor (TTP) sends a challenge (i,vi) 

to the server, where vi is a random coefficient. Upon receiving the challenge, the server 

computes corresponding proof ),( T  back to the auditor, where 

QviTT i
v i

  ),(, and Qvimv iii   ),(, . Then the auditor checks whether 

),)((),(
xv

guiHegTe
i 
   holds. If yes, the auditor is convinced that the files are 

well stored in the remote server. In this scheme, the tags are shorter and more efficient 

and they give a rigorous proof of security of the scheme that one can extract a file from a 

prover able to answer auditing queries convincingly. However, this scheme will leak 

information to the auditor since the server needs to send linear combination blocks back 

to the auditor. To resolve the issue, Wang et al. [15] proposed a privacy-preserving public 

scheme using random masking that is also used in [16], where the server chooses a 

random number to embed it into the response's computation. They claimed that their 

proposed scheme can resist various known attacks. However, a research [17] pointed out 

its security loopholes and it fails to resist some existing forgery attack and conspiracy of 

malicious servers and outsiders. 

Zhu et al. [16] proposed an interactive PDP scheme to check data integrity as well as 

keeping privacy in untrusted cloud environment. The main idea of this protocol is also 

used in [13], which we'll discuss in section 4.4. So to save space, we'll explain the usage 

of BLS in that protocol detailedly later. They proved that their scheme is secure, in the 

zero-knowledge proof system (MP-ZKPS), which can resist data leakage attack and tag 

forgery attack. However, [17] demonstrates that Zhu's protocol lacks the soundness in the 

face of some threatens, e.g., malicious servers that generate valid responses may pass the 

verification even when they delete all outsourced data. 

Hanser et al. [8] proposed a robust PDP based on elliptic curves which supports private 

and public verification simultaneously in one same system. The verification process is 

based on the properties of BLS rather than elliptic curves as the title shows. In this 

scheme, tags are computed and mapped into points and the properties of bilinear mapping 

for additive and multiplicative groups are used in the verification. In theory, the scheme 
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indeed enhances efficiency and provides convenience. However, the chosen of elliptic 

curves and bilinear mapping is not so easy in practical scene. 

 

4. Schemes Supporting Dynamic Updates 

Original PDP/PoR schemes are only suitable for static files, which can be applied in 

libraries and scientific datasets. However, in practical terms, clients update the outsourced 

data frequently, like inserting, modifying or deleting files or blocks. It is obvious that we 

have a great necessity to consider the dynamic verification for PDP/PoR schemes to 

render them the ability of making verifications in dynamic scenarios. Generally, in 

dynamic PDP/PoR schemes, the auditor not only verifies files' integrity but also checks 

whether remote servers have performed updates after clients' update request arrives. 

Remember that client needs to retrieve their data blocks if they want to update them. 

Now we'll show following structures used in PDP/PoR schemes that can achieve 

dynamic verifications. 

 

4.1. Disguised/Special Blocks (Sentinels) 

As is shown before, in POR [4], they embed some special blocks called sentinels 

into the data file that are indistinguishable from the file itself to detect server’s 

misbehavior. There’s a fact that the number of queries is limited for each challenge 

needs a sentinel and the pre-computed “sentinels” prevent the improvement of 

realizing dynamic data updates. 

The scheme proposed by Ateniese et al. in [19] supports data dynamic opera tions 

like modifying, deleting and appending with the help of tokens. Note that there are t 

tokens and c blocks in each token. In this scheme, the client pre-computes t possible 

challenges and corresponding answers called tokens before uploading his files. Each 

token is computed as ),,,( 1 ciiii mmcHt  , where ci is a challenge nonce to prevent 

pre-computed values by the server. We first have a look at the default verification 

without dynamics consideration. When verifying remote storage, the auditor sends 

challenge (ki,ci) to the server, where ki is the ith token key to generate block indices 

to be challenged. Upon receiving the challenge, the server computers 

),,,( 1 ciii mmcHz   and sends [z,ti’] back to the client, where ),(' ii tiEnct   and the 

c-element set },,{ 1 cii   denotes the indices of challenged blocks. In turn, the client 

computes whether ),()'( zitDec i   holds. Note that (Enc,Dec) is a encryption-

decryption function pair. 

To adapt dynamic settings, the token's structure has been modified to 

),,(),1,( 1 ciiiii mccHmcHt   and ),,(' ii tictrEnct  , where ctr is an integer 

counter to record the latest version of tokens and avoid replay attacks. The new 

structure is easy to factor out specified blocks to be updated. When the client wants 

to modify the ith block from values mi to mi’ stored on the server, he needs to make 

a replacement of the corresponding blocks and modify all the remaining verification 

tokens. The deletion of a certain unwanted blocks is similar with that of 

modification and the deleted blocks can be replaced by a special block in respective 

positions. However, it is just fit for a small portion of deletion. Obviously, the cost 

of updating all remaining tokens is large, so they make a change to adapt their 

scheme to batch updates. For a block append operation, a bi-dimensional logical 

structure should be taken into consideration, and appending new blocks to the 

original blocks m1,...,mn in a round-robin way as: 

m1’=m1, mn+1 

m2’=m2, mn+2 

... 

mk’=mk, mn+k 
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... 

mn’=mn 

Then we can use modification operation to append the blocks. 

As is seen, such schemes above poor scale when blocks need to be updated and 

allow only for a limited number of audits [12]. So the following structures are used 

to enhance the performance of dynamic verifications. 

 

4.2. Skip List Based Schemes 

[10] First introduced the notion of Dynamic PDP with the help of skip list or hash 

trees. In this part, DPDP-I (skip list based one) will be discussed. A skip list was 

proposed by William Pugh [23] in as early as 1990. It is a data structure based on 

the idea of probabilistic balancing rather than strictly enforced balancing, which can 

be used instead of balanced trees while providing simpler implementation and faster 

speed. A skip list containing n elements has log n levels with high probability. The 

base level is a sorted list of the elements and a subset of these elements will also 

appear in upper levels. In a skip list, each node v stores two pointers: rgt (v) and 

dwn (v). rgt (v) is a first pointer indicating a next node to the right of node v and 

dwn (v) is a second pointer indicating a next node below node v. The basic update 

such as insertion and deletion of nodes in a skip list can be depicted in figure 4. If 

we want to insert a node in the skip list, we should first to determine the level of 

this inserted node randomly. Figure 4 show that if the level of the inserted node is 

larger than the current top level, we should add a new level for usage. Then we find 

a proper position according to the search path for this node and then modify 

corresponding pointers. Deletion is of the same idea, i.e. first to search the node,  

then modify the pointer field. 

 

Figure 4. Dynamic Operations in a Skip List 

In an authenticated skip list [24], each node has a label f(v), which can be used to 

check the integrity of the file blocks. To make it support efficient verification of the 

indices of the blocks, Erway [10] made an improvement by defining a hash scheme 

with rank information in their first scheme DPDP-I, where the rank r (v) of node v 

denotes the number of nodes at the bottom level that v can reach. The skip list stores 

data at the bottom level nodes, e.g., the block tag Ti in this scheme. We can reach 

the ith node of the bottom level by traversing a path that begins at the start node. 

Based on work above, they proposed hashing scheme with ranks and the ranks of 

nodes are computed as follows: 
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A bottom node store tags Ti to represent a block mi, which has a much smaller size. 

In such a way, the client can verify the remote storage by just downloading tags 

instead of blocks to reduce the communication bandwidth. We use the skip list to 

protect the integrity of tags, where the very tags can protect the integrity of the 

blocks. 

We start with the default verification of DPDP-I [10]. Assume vk,...,v1 is the path 

from the start node vk to the specified node v1 that is related to mi and its reverse 

path is the verification path. If the auditor wants to verify the integrity of block mi, 

he first sends chal to the server. Then the server works out Ti and a proof   for Ti. 

They defined two values q(vj), g(vj) and a boolean d(vj), where d(vj) denotes whether 

the previous node is to the right or below v. q(v) and g(v) are the rank and label of 

the successor of v respectively, where v is not at the bottom level. So the proof for 

block mi together with Ti is the sequence  (i)=(A(v1),...,A(vk)), where 

A(v)=(l(v),q(v),d(v),g(v)). Upon receiving Ti of block mi and the proof   for it, the 

client computes (l(vj),q(vj),d(vj),g(vj)) for each node vj on the verification path 

together with a sequence of integers j , where j  is the sum of the ranks of all 

nodes that are to the right of the nodes seen in the path so far. If T and   are 

correct, the auditor is convinced that remote files are well stored.  

When a client wants to update his file, he'll first send an update request Upda te to 

the server, which returns Ti and its proof '  back. The client verifies proof '  and 

computes the label of the start node of the skip list after the update. Then it sends  

related update information to the server to perform updates. For an insertion of mx 

after mi, the server inserts corresponding Tx in the skip list after the ith element. For 

a modification of mi into mi', the server replaces Ti with Ti' of the skip list. And for a 

deletion of the mi, the server deletes the i element of the skip list. Afterwards, the 

server updates the labels, levels and ranks of the affected nodes and returns (Ti', ' ) 

(modification and insertion) or Ti-1 (deletion). After updating, the server should send 

proofs to the auditor proving that it has updated files as required. Upon receiving 

the proof (Ti', ' ), the auditor will make update verifications. If so, the client will 

store the updated label of the start node and deletes the new block from its local 

storage. The updates affect only nodes along the verification path.  

Note that in their scheme, they care about tags rather than real blocks in the skip 

list. When we verify the integrity of the blocks in static scenes, the process is 

similar with schemes before. The server computes proofs (T,M), where 

NTT
c j

jj

a

i
mod1   and  

c
ij jmaM 1 (aj is a random number by the client as part of 

challenge). Then the auditor verifies whether T=g
M

 holds. Here, Ti of block mi is 

computed as NgT
im

i mod , where 
*

N
Zg   is a generator of the group. We store 

the tags in the bottom-level nodes of the skip list rather than the blocks. As we see, 

with the help of skip list, we could make integrity verification when clients update 

their files in an efficient way. 

 

4.3. Tree-Based Dynamic Schemes 

Many researchers apply various authenticated tree structures in their verification 

schemes to support efficient dynamic verifications. These structures can guarantee 

the integrity of the tags and further data blocks. Erway [10] proposed an 

authentication scheme with Rank-based RSA Tree [22]. In this scheme, the server 
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keeps a RSA tree, where the leaves store elements S= {T1, T2,..., Tn} to be verified. 

Ni and gi are the RSA modulus and its base respectively for each li 1 . Each node 

v has a digest i

ur

Ngv
i

vNu

mod)(
))((

)(







 , where ))(( ur i   is a prime representative 

of )(u  computed using hi and N (v) is the set of children of node v. The server 

also stores ri+1(Sv), while the client only stores the set digest )( Sd  . Let v0, 

v1,...,vl be the path from Ti to the root R, r=vl. Let B (v) denotes the set of siblings of 

node v. Proof )( x  is the ordered sequence l ,...,1 , where i  of proof )( iT  is 

computed as )mod)),(((
))((

)(

i

ur

iii Ngvr
i

ivBu







 . When verifying, the client checks 

whether 1
1

1
11 mod)(,,)( 




 i

i
iii NhTh i


 and l

l
d


 holds, where 

))(( iii vr    and i

ur

i
i Ng

iivBu

mod
))((

)(







 . 

In dynamic settings, the elements are stored in a hash table that has several 

buckets, each storing several elements. The RSA tree is built on the prime 

representatives of accumulated bucket values rather than elements themselves. A 

bucket L has elements x1,x2,...,xh, and they have the same value after the function of 

hash table. The accumulated bucket value of L is computed as 

1
)()()(

1
mod12111 NgA h

xrxrxr
L


 , so the tree has an extra level of accumulations. When 

we query for x, the server follows the path v0,v1,...,vl+1 and collects the 

corresponding pre-computed witnesses 
)1(

1

)1(

1
',,1

v

lj

v

j
AlA


  for 11 ,,  ljj . If the 

client wants to insert an element x in the hash table, we first locate its bucket that it 

belongs to. And assume v0,v2,...,vl+1 be the path from the newly inserted element to 

the root of the tree. Accordingly, we update following items: digests )( iv  along 

the path from bucket L to the root, local witnesses 
)(

i
v

j
A  for all nodes vi, '1 li  . 

Modification and deletion are similar to that of insertion. Also the verification of 

updates and integrity of files can refer to DPDP-I and the scheme [20] below, we 

omit them here to avoid duplication. 

Wang [12] proposed an auditing scheme using A Merkle Tree (MT) [20] to realize 

dynamic operations. It can handle dynamic data operations including modification, 

insertion (not only appending) and deletion. Previous schemes involve file index i in 

the tags generation. So when inserting a block, we need to re-compute following 

tags, which is a heavy work. In MT construction, they removed the block index i 

from tags, so individual block operation won't affect others. We'll discuss this 

scheme completely but the route information for verification is omitted because 

previous subsections have shown a lot. 

Initially, the client uses KeyGen to generate a signing key pair (spk,ssk) and the 

secret-public key pair is (sk,pk), where ),( ssksk   and ))(,( pRZspkgpk  


. 

Let )||||(|||||| unnameSSigunnameS ssk  be the file symbol. He generates tags for 

each block as 


))(( i
m

i umiHT  and then generates a root R for MHT, and the 

hashes of H(mi) act as leaves. Then, the client computes 


))(())(( RHRHsig sk  to 

signs R. Afterwards, he sends ))}((,}{,,{ 1 RHsigTSF sknii   to the server and 

deletes ))}((,}{,{ 1 RHsigTF sknii   his local copy. 

Before discussing the implement of dynamics verification, we first have a look at 

the setup of the system and default verification, which is based on the properties of 

BLS. 

If the auditor wants to verify the remote storage, he first sends a challenge 

c
sisivi 

1
)},{( to the server, where {s1,...,sc} is a subset of [1,n]. After receiving the 
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challenge, the server computes proof ))}((}),({,,{ ,
1

RHsigmHT sksisii
c

 , where 

 
c

s

si iimv
1

 ,  

c is

si

v

i
TT

1
and the corresponding auxiliary information 

c
sisi 

1
}{  

(we won't explain   here to save space) back to the auditor. The auxiliary 

information here refers to the node siblings on the path from the leaves h(H(mi)) to 

the root R of the MHT. Upon receiving the proof, the auditor first generates root R 

using 
c

sis
ii

mH 
1

}),({ and checks whether )),(())),(((


gRHegRHsige sk   

holds. If yes, he continues to check whether ),)((),(
1


gumHegTe

c
i

s

si

v
i   

 

holds. If yes, output success. Any checks failing to pass the verification indicate that 

the server does possess intact files. 

When the client's update request arrives, the server executes the required dynamic 

operation using the information sent from the server. For modification, the client 

first computes the tag of the new block m': 


))'(('
'

i
m

ii umHT  . Then it will 

generate and send an update request )',',,( ii TmiM to the server to execute the 

update operation. The server then replaces block m with m' , replaces Ti with Ti'. 

Then replaces H(mi) with H(mi') in the MHT. Afterwards, the server generates a 

proof: }')),((),(,{ RRHsigmH skii , where i  is the authentication information of 

mi’. Now the owner will generates root R using )(, ii mH  and verify R by checking 

whether ))),((( gRHsige sk  equals to )),((


gRHe . If so, the owner will computes 

the new root value and compare it with R'. If true, the owner will make a signature 

))'(( RHsig sk and send it to the server for update. Of course, if any one of the 

verification is false, the process will not proceed. When we want to insert a block m' 

into this tree, we can refer to the modification operation. Therefore, we just need to 

know the sketch of the operation for sake of space saving. To achieve this, we 

present a figure depicting the process. As is shown in Figure 5, if we want to insert 

a block m' after m2, we'll need an extra internal node I except the inserted node N to 

add into the tree. So when we want to delete block m', we'll also delete node N and 

all the latter blocks it forward. Figure 6 shows the process of insertion and deletion 

in a MT tree. As we can see, the structure of the tree will not change when 

modifying data. However, when it deals with inserting or deleting, the tree's 

structure may be dramatically changed with the operations increasing.  

 

 

Figure 5. Insertion and Deletion in MHT 
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As we see above, one obvious disadvantage of trees above is that it becomes 

unbalanced after several insertion and deletion, resulting in the height of the tree 

growing or decreasing dramatically and locating different blocks in the tree 

consumes quite different time. Zhang and Blanton [12] proposed a balanced update 

tree to deal with issues above and used the notion of range to enhance efficiency 

([30] also uses the range-based trees). In the update tree, each node represents a 

range of block indices rather than a specific index, where operating on ranges helps 

to lower the size of the tree. One feature of the tree is that the range of a node's left 

child contains data blocks whose indices are lower than L and the range of the child 

contains indices larger than U, where [L, U] is an attribute of a node indicating the 

range of it covers. This benign property favors the balancing of the tree using AVL 

trees like algorithms. 

Then, we'll show how these dynamic operations are performed. In this scheme, 

unlike [12], both the client and the server store the update tree to omit verification 

for updates. To perform an update (modification, insertion or deletion), the client 

first modifies the tree, computes MACs of the updated blocks and informs server of 

these changes. Upon reception of this update request, the server modifies the tree 

accordingly. If we want to modify a range of blocks, we can insert an internal node 

indicating the version of the blocks has increased. If we want to insert a range of 

blocks, an extra node with the new blocks will be added into the tree, and the 

indices of the following blocks will increase by the number of inserted blocks. To 

delete a range of blocks, the corresponding node will be marked with operation type 

"-1" and the offset (explained later) of the following blocks will be adjusted 

accordingly. 

Take figure 6 as an explanation of the detail operations. Each node is assigned a 

set of attributes: [L, U], {Op, V, ID, R}. [L, U] specifies the start and end indices of 

the data blocks; V is the version number indicating the number of modifications 

performed on the data blocks. Op represents the operation type of this node where 1, 

0 and -1 represents insertion, modification and deletion respectively. A node's ID 

has different meanings according to its type (we won't explain it further here). 

Offset R indicates the number of data blocks that have been added to or deleted 

from, and the range of data block indices preceding the range of the node.  

 

 

Figure 6. Dynamic Operations in Ranged Update Tree 

The initial state: node A has two children B and C and their ranges are [90, 110], 

[40, 70] and [190, 210] respectively. If we want to insert a range into this tree, say 

[51, 60] as is shown in the leftmost tree. And the inserted range falls on left side of 

node $A$'s range and intersects overlaps with the range of node B. So before 

inserting the ranged blocks, we first divide B's range into two and set D's Op into 1 

indicating this insertion. The middle one shows the modification of blocks, where 

the modified range falls on the right of node A's range. So we modify the block 

range contained in the original request based on A's offset R, and thus overlaps with 

C's range. So we insert two nodes with ranges before and after C's range and 
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increment the version of C (the insertion here is just as former descriptions). And 

when deleting a block, as is shown in the rightmost of the figure, its range falls on 

the right of A and the indices in the original request are adjusted. For the adjusted 

range falls before C's all ranges, it will be inserted as the left child of E 1 and 

corresponding attributes will be adjusted. 

Stefanov et al. [21] presented an authenticated file system name Iris, which 

supports authentications of file-system data and meta-data blocks and also handles 

all existing file system operations, like deleting, moving and truncating while still 

keeping the tree balanced. Their protocol is claimed to be the first PoR to efficiently 

support dynamic operations over the entire file system. The authentication of 

dynamics is based on Merkle trees and the scheme supports existing file-system 

operations. 

 

Figure 7. Balanced Merkle Tree in Iris 
 

As is shown above in Figure 7, a file version tree for each file is constructed that 

authenticates version numbers for all file blocks in a compressed form. Also to 

authenticate file-system meta-data, every directory is mapped to a directory subtree 

and the file-system directory tree is transferred to a Merkle tree to support file -

system operations like delete or move the entire directories. Aiming at supporting 

directories with large number of files efficiently, they construct a balanced Merkle 

tree for each directory that contains intermediate, empty internal nodes as well as 

subdirectory nodes for balancing. They also construct a free list that contains 

pointers of nodes deleted from the data files to support remove and truncate f ile-

system operations and defer garbage collection of deleted nodes as an optimization 

of their scheme. 

 

4.4. Index Hash Table Based Schemes 

To support dynamic operations, [13] introduces an index-hash table to record the 

changes of file blocks and generate corresponding hash value for each block in the 

verification process. The index-hash table consists of serial number (the index of 

block mi), block number Bi (the original number of block), version number Vi (the 

version of update for the specified block) and an extra random integer Ri to avoid 

collision. Let 
],1[

}{
ni

  be the index-hash table, where )||||( iii
i

RVB  . Figure 

8 from [13] shows an example of the index-hash table and an empty record (i=0) is 

used to support the operations on the first record. We can implement required 

dynamic operations in the index-hash table, which provides a higher probability of 

detection, however, at the cost of more complexity of the verification.  
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Figure 8. Structure of Index Hash Table 
We begin with their basic constructions: 

Setup: g and h are two generators of G, where G is a multiplicative group with 

order p. TGGGe :  is a bilinear mapping, where GT is also a multiplicative 

group of the same order as G. The KeyGen algorithm outputs ),( sk and 

),,,(


hhhgpk  , where pZ , are randomly selected numbers. The client 

divides file F into n blocks, each having s sectors. So each sector is denoted as mi,j 

( sjni  1,1 ). Set )(
)1(

nFH   , where jk
s

j 1
  ( pj Zk   are s numbers only 

known to the client) and Fn is the file name of F. Then he computes an index 

),1,( iii
i

RViB   and a tag GgT

s

j ijj
mk

i
i 

 


1)2(

)(


 for each block, where 

)()1(

)2(

i
H 


 . Afterwards, the client sends ),( iij Tm  to the server and 

),,,(
1)1( skk

gg   to the auditor. 

Challenge-Response: In this protocol, the server will send a commitment 

),)(( 


hC   to the auditor before the auditor challenges it, where   is randomly 

selected from Zp and ))(,(
1


 hue

j

j

s

j 
 . Then the auditor will know the server is 

ready for the verification and send it a challenge Qiivichal )},{(: , where Q is the 

set of challenged blocks. Upon receiving chal, the server computes a linear 

combination value of blocks j as }{}{
),(

iji
Qvi

jj mv
i


   and the 

combination value of tags QviTT
i

v

i

i 


),(,


. Here j is a random number. Then 

it sends ),( Tproof  to the auditor. Upon receiving the proof, the auditor checks 

whether ),())(,)((),(
1),(

)2( 
 huehehTe

js

j

i

Qivi

u

j

v

i 
  holds. 

Now we take dynamic operations into consideration. 

For modification, the client first modifies the version number by 

1}{max   jBBi VV
ji

 and uses another random number Ri to gain a fresh index-

hash '
i

 . Then he computes the new hash )||||(
)1()2(

iii
i

RVBH   , and the new tag 

by


 )()(
1

)2('
'

 


s

j

m

jii

ij

uT  , where  juu and outputs },,{
'''

iii
mT . For deletion, 

the client computes the new hash )||0||()1(

)2(
ii

i
RBH


   and


 )(

)2('

ii
T  , deletes ith 

record to get a new '  and then outputs },,{
''

iii
TT . For insertion, the client first 

inserts a new record in ith position of the index-hash table   , and the following 

records move backward in order. It also update 1 ii BB , and 1}{max   jBBi VV
ji

, 

and a random Ri to get a new hash 


 )()(
1

)2('
'

 


s

j

m

ii

ij

uT , where  }{ juu , 

and then outputs },,{
'''

iii
mT . After the update operation, the auditor can verify 
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whether the server executes the update as required. For Modification or Insertion, 

the auditor must check whether ),(),(),(
'

1

)2(' 
 huehehTe

ij
m

j

s

jii 
  holds 

for },,{
'''

iii
mT . For Deletion, the auditor checks Ti by comparing it with the stored 

one and verifies whether )),||0||((),(
)1(' 

 hRBHehTe ii
i

  holds. In [25], they use 

the structure of chained hash of a proof to retain freshness of the data. It is a hash 

over the data in the current proof and the chain hash of the previous proof, where 

the idea can be seen in Zhu's [13] protocol. We'll not discuss it in detail.  

In summary, a skip list can be seen as a special hash tree, and it achieves similar 

efficiency as hash trees but provides fast search and simple implementation. Hash 

trees are a generalization of hash lists and hash chains. While a tree structure has 

higher probability of detection. In conclusion, we recommend use hash trees in the 

verification protocols. Note that these structures can be used in one scheme to 

achieve better performances. 

 

5. Efficiency and Performance 

When a protocol is designed, we often make a measurement for it to test its 

performance based on some criteria. Cost of computation, communication and 

storage should be taken into consideration. Owing to the complexity of the cloud 

storage, we have a necessity to discuss other respects of the protocols to valuate 

their performance, like supporting public verification and dynamic operations, and 

maintaining privacy. This section presents the performance of some integrity 

auditing protocols from various aspects. In former parts, we have elaborated the 

importance of dynamics supporting, and there's a necessity to make an auditing 

protocol equipped with public verifiability in cloud environment. Though private 

verification can achieve higher efficiency, but in practicality public verification can 

help achieve economies of scale for cloud computing. Refer to Table I to get a 

general view. 

Table 1. Comparison of Integrity Checking Schemes for A File (N Blocks) 

 

Scheme 

Storage Comm

unication 

Computation Dy

namics  

Pu

blic 

verif. 
Ser

ver 

Cli

ent 

Server Auditor 

RIC [3] O(

1) 

O(

1) 

O(1) O(n) O(1) × × 

PDP [1] O(

n) 

O(

1) 

O(1) O(1) O(1) × √ 

CPOR-I [5] O(

n) 

O(

1) 

O(1) O(1) O(1) × √ 

CPOR-II [5] O(

n) 

O(

1) 

O(1) O(1) O(1) × √ 

SPDP [19] O(

n) 

O(

1) 

O(1) O(1) O(1) 1√ × 

DPDP-I [10] O(

n) 

O(

1) 

O(log 

n) 

O(log n) O(log n) √ × 

DPDP [13] O(

n) 

O(

1) 

O(log 

n) 

O(log n) O(log n) √ × 

DPDP-II [10] O(

n) 

O(

1) 

O(1) O(1) O(1) √ √ 

MHT-POR 

[9] 

O(

n) 

O(

1) 

O(log 

n) 

O(log n) O(log n) √ √ 

UTree-EPDP 

[12] 

O(

n) 

2 

O(m) 

3 O(t) O(log 

m+t) 

O(log 

m+t) 

√ √ 
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1 Insertion is not supported but appending and number of dynamic operations is 

limited. 

2 m refers to the number of dynamic operations on blocks.  

3 t refers to the number of blocks in a range. 

Storage overhead: In some MAC-based methods [4], the metadata is as long as 

each data blocks and the storage overhead of metadata is the same as the data . In 

RSA-based homomorphic methods, the size of metadata is equal to the size of RSA 

modulus. In order to reduce the storage overhead caused by metadata, people prefer 

to design short metadata in verification protocols. Compared to the RSA-based 

homomorphic tags, the BLS-based signatures/tags are much shorter. For a third 

auditor, it always does not have much storage as the server. We should remove 

storage burden from TTP as much as possible and may transfer them to servers. In 

[5, 7, and 8], blocks are divided into sectors to balance storage and communication. 

In fact, less storage on the auditors, large communication cost will be. These are 

methods mainly used in remote checking scheme to save storage. 

Communication cost: We mainly consider the communication cost in the 

challenge-response phases. According to previous work, we find that spot checking 

[1, 5, 8, 9, and 10] can reduce the communication massively. Also, with the help of 

short homomorphic tags, we can aggregate multiple responses into one to reduce 

communication cost. 

Computation complexity: Before outsourcing files to remote servers, clients may 

encode files (when needed) and generate related metadata. For servers, in  [3], they 

need to exponentiate the entire data. To reduce the expensive computation cost, 

dividing files into blocks [1, 5] or further into sectors [5, 7, 8] is one preferable 

approach. For auditors, we may try to transfer the computation cost to the remote 

storage server that is more powerful. 

In cryptography, a system has provable security if its security requirements can be 

stated formally in an adversarial model as opposed to heuristically, with clear 

assumptions that the adversary has access to the system as well as enough 

computational resources. Those auditing protocols guarantee security in different 

model, e.g., in standard model or random oracle. 

Table 2. Comparison of Security for Integrity Checking Schemes 

Scheme Securi

ty model 

Assumpti

on 

Priva

cy 

Retrievabil

ity  

RIC [3] SM DH √ × 

PDP [1] RO IF,DH × × 

SPDP [19] RO N/A √ √ 

DPDP-I [10] SM IF,DH √ × 

DPDP-II [10] SM IF,DH √ × 

POR SS N/A √ √ 

CPOR-I [5]DPDP 

[13] 

RO IF,DH × √ 

CPOR-II [5] RO CDH × √ 

DPDP [13] RO CDH √ √ 

MHT-POR [9] RO CDH √ √ 

UTree-EPDP [12] SS MAC √ √ 

 

* SM: Standard Model, RO: Random Model, DL: Discrete Logarithm, IF: Integer 

Factorization, DH: Diffie-Hellman, CDH: Computational DH. 

Security guarantees that (1) from any adversary that passes the check a non-

negligible amount of the time we will be able to extract a constant fraction of the 
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encoded blocks; (2) if this constant fraction of blocks is recovered we can use the 

erasure code to reconstruct the original file. And in the third party model, we should 

guarantee the privacy of the files during the verification process to avoid 

information leakage to the third party auditor; (3) the attacker can never give a 

forged response back to the verifier. 

In table 2, we compare items related to security of these verification protocols, 

including security model, assumption and privacy. 

 

6. Discussion and Conclusions 

PDP and POR schemes are widely used in cloud storage to verify the integrity of 

outsourced data. According to discussions above, we make several remarks as our 

conclusions and future work. 

Remark 1: 

PDP and POR schemes can be used to check the integrity of remote outsourced 

data, and they have similar verification process in their construction. They are 

becoming to merge into one now from the observation of recent work. We now 

conclude as follows: 

1) Tag Ti for each block in PDP [1, 8, 11, 12, 16] schemes play the same role as 

signature i  for each block in some POR schemes [4, 5, 9], and for convenience, we 

unify them as Ti in this paper. They all represent original blocks to some extent and 

be used in the verification process. 

2) In the challenge phase, both of them generate ),( ivI  as challenge, where I is 

the index set of the challenged blocks, $k$ is the key to generate these indices and vi 

is randomly selected numbers to be used in the proof computation for servers. 

3) In the proofs generation of both schemes, servers compute ),( MT  as proofs of 

the challenged blocks, where T is the tags proof and M is the blocks proof. 

On the other hand, PDP and POR schemes have several subtle differences as 

follows: 

1) In POR schemes, the client should first encode files to be outsourced, while 

such a process is not necessary in PDP schemes. As a result, POR schemes can 

recover damaged files, while in some PDP schemes files without encoding cannot 

manage this. 

2) In [1], blocks of the same contents may result in the same tags if we remove 

)||( viW , which will leak information of blocks to the and outsiders. However, in 

[9], same tags for blocks of the same contents will not leak information because of 

the encoding. Later work has obscured this difference and solved the issue. 

Remark 2: 

RIC is just one aspect of remote data checking, in this section we discuss another 

aspect briefly: data format checking. Remote servers may not store the outsourced 

data in a safer format and can tolerant fault as clients require for self benefits. And 

clients generally have no effective approaches to verify the vulnerability of their 

data. 

Dijk, Juels and Oprea discussed the challenge above. They want to enable clients 

to check whether a cloud provider stores outsourced data in encrypted forms while 

at rest, so they propose a novel hourglass scheme in [26] to prove this. The initial 

idea is to ensure servers have strong incentives to store encrypted files rather than 

original ones from the perspective of economic security. A given encoded file G is 

transformed into a special encoding file H according to clients’  preference. Core 

idea of hourglass scheme is less expensive for a server to comply fully with an 

hourglass scheme and store only encrypted data than to cheat and store an additional, 

unencrypted copy of the data. It’s clear to see what we want is to construct such a 
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proper hourglass function to achieve above goals. One possibility is using inversion 

of hash function as Figure 9 shows. 

 

 

Figure 9. Mechanism of Hourglass 

A benign server stores the encapsulated ciphertext H and thus recovery of G from 

H is feasible with the help of hourglass scheme via the computation )( ii HhG  . 

However, a dishonest server that stores plaintext file F has to compute ciphertext 

block Gi and then compute H, which is costly as the inversion of h is a 

computational dilemma, which will delay the response of a dishonest server. 

Therefore a client can distinguish a dishonest server from a benign one. However, 

there exists another threaten that a adversarial server may construct H' that leaks 

parts of the plaintext file F. Authors of this paper construct three constructions of H 

to overcome such concerns. Details of the construction are out of the scope of this 

paper. Generally speaking, we can verify whether files are encrypted (or other 

encoded forms) in remote servers with the resource-constraint-based hourglass 

scheme. 

They also develop a protocol called Remote Assessment of Fault Tolerance 

(RAFT) [27] to check the fault tolerance of stored files, which enables a client to 

have the proof of the well distribution across physical storage devices of given files 

to achieve ideal fault-tolerance. Their main idea is the usage of measurement of the 

time taken for a server to respond to a read request for a given set of blocks. Some 

proposed schemes take advantage of the dilemma of computation problems to make 

a measurement of computational resources [28]. Both storage and computational 

resources are taken into consideration in designing their protocols. They proposed a 

practical lock-step protocol to generate subsequent steps non-interactively, where 

the blocks indices challenged in the next step depend on the current retrieved blocks.  

Remark 3: 

We should not constraint our resolutions to classical cryptography only, quantum 

cryptography or optical cryptography can also be taken into consideration. For an 

instance, most previous PDP protocols are insecure when quantum computers are 

considered [29]. In [29], they propose a homomorphic hash-based PDP (HH-PDP) 

protocol under lattice assumptions, which generates homomorphic verification tags. 

The security of the protocol relies on the hardness of ideal lattice problems. In 

addition, the protocol is more efficient because the main operations in our 

construction are addition and multiplication on small integers. Extending our vision 

to propose remote storage checking schemes using other cryptography tools is a 

promising research aspect in our future work. 
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