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Abstract 

There is an increasing need for unobtrusive positioning systems in smart homes and 

assisted living environments. This review presents the main technologies used for device-free 

passive indoor positioning, including pressure sensors, thermal infrared sensors, sound 

source localization, ultrasound, radio frequency, infrastructure-mediated sensing and 

electric-field-based methods. In addition, it compares the advantages and disadvantages of a 

range of positioning systems to help identify the most suitable positioning technology for 

specific cases. 
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1. Introduction 

The need for positioning is obvious in smart homes and assisted living environments. 

Reliable location information is vital for different location-based services that make living 

easier and safer. For example, one service that uses location information is the automatic 

adjustment of lightning, heating or home electronic devices based on a user’s physical 

location. However, as operating environments, homes place certain constraints on positioning 

systems. For instance, a positioning system should be extremely easy to use. In practice, the 

whole system should also be invisible to the user, as users might find even small sensors or 

actuators too unattractive if they are visible [1]. To be acceptable for home use, a positioning 

system needs to be passive, device-free, and unobtrusive. 

In passive positioning, users do not need to perform any specific activities for the system to 

position them; the system operates automatically so that users do not necessarily notice its 

presence. Device-free means that people tracked by the system do not need to carry devices or 

tags. This is important, as people are generally unwilling to wear extra devices, especially at 

home [2]. In addition, individuals can forget to put a device on, especially after changing their 

clothes. Another challenge is that every individual in a positioning area should have a device, 

which makes having visitors problematic. Furthermore, mobile positioning devices use 

batteries and require regular monitoring and changing. 

Some device-free passive positioning systems use cameras in their construction [3, 4]. 

However, camera systems have several drawbacks. These systems require a line of sight from 

the user to the camera. Lighting can also affect the operation, and camera systems do not 

work at all in the dark. Moreover, video processing is expensive. The main problem, 

however, is related to privacy concerns. Most people are unwilling to install any system that 

they perceive as intrusive in their homes [5, 6]. Accordingly, this paper omits systems that use 

conventional cameras. 
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This paper presents the main technologies that can be used in device-free passive 

positioning: pressure sensors (Section 2), thermal infrared sensors (Section 3), sound source 

localization (Section 4), ultrasound (Section 5), electric field (Section 6), infrastructure-

mediated sensing (Section 7), and radio frequency (RF) (Section 8). As noted, each 

technology has its own section. These sections do not present every system or project that 

uses the technology in question; instead, they provide one or a few examples, based on the 

number of known implementations. The presented implementations were selected based on 

their recognisability and the quantity and quality of the information available about the 

system. Section 0 describes miscellaneous forthcoming systems. Finally, Section 0 compares 

the presented technologies and provides a table that contrasts the main properties of each 

technology. 

 

2. Pressure Sensors 

Pressure sensors are the most traditional positioning system technology, the initial way to 

construct a positioning system was to install pressure-sensitive sensors on or under a floor 

surface. If installed under the floor surface, the sensors are invisible to the user, but the 

installation is laborious. This type of installation is also not always possible, as it requires 

flexible flooring and sufficient installation space beneath the floor surface. 

One benefit of this system is that it enables user identification, as the pressure generated 

corresponds to a person’s unique weight and gait. User identification is beyond the scope of 

this paper, but [7-9] provide more information on this topic. 

 

2.1. Load Cell Systems 

In a load cell system, the floor consists of tiles equipped with load cells. Normally, this 

system places cells under the corners of the tiles so that each load cell measures the sum of 

the contributions from the corners of four separate adjacent tiles. These cells sense vertical 

force and allow the system to determine the user’s location on the floor. The location 

accuracy is equal to the size of the tile. For example, [10] used 50 x 50 cm tiles. The 

algorithms needed for location tracking are quite simple and are not computationally heavy. 

To make the system simple and cheaper Schmidt et al., [11] determined how to reduce the 

number of load cells. Their idea was to use bigger tiles (they used a 2.4 x 1.8 m tile) and to 

determine a person’s position on a tile by calculating the centre of pressure on the surface 

using the load measured at each corner of the tile. Their achieved tracking accuracy was 

almost in the same range as when using smaller tiles. Naturally, the calculation only works if 

there is only one person at a time on the tile. 

 

2.2. Pixelated Surfaces 

Instead of using separate sensors, as in a load cell system, some systems use pixelated 

surfaces made up of many sensors. For example, Middleton et al.’s [7] 3.0 x 0.5 m sensor mat 

uses 1 536 individual sensors. The sensors are simple binary switches made by separating a 

pair of wires by a deformable material such as foam; when a user applies force to the 

construction, the wires come into contact. The sensor mat consists of 96 horizontal and 16 

vertical wires, as shown in Figure 1.  

As the sensors are binary on/off switches, this system can only detect if a person is 

standing on the mat. For instance, it is not able to determine the weight of the person on the 

mat. Furthermore, the prototype mat cost just under €80. Covering larger areas with this kind 

of mat would be quite expensive. 
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Figure 1. Sensor Mat of Binary Switches [7] 

Alternatively, the Magic Carpet [12], a 1.8 x 3.0 m carpet that is similar to Middleton et 

al.’s, sensor mat, uses a 16 x 32 grid of piezoelectric wires. The type of wire used produces a 

voltage if pressed anywhere along its length. The system can determine a person’s location on 

the carpet based on which horizontal wire and which vertical wire he or she is standing on. 

The size of the grid’s cells—in this case, 9 x 10 cm—determines the system’s accuracy. 

Another option is electromechanical film (EMFi): a commercially available thin and 

flexible polypropylene film coated with metal electrodes. EMFi is capable of storing a large 

permanent charge. If an external force affects the surface of the EMFi, a change in the charge 

between the electrodes, detected as a voltage, occurs [13]. For example, Pirttikangas et al.’s, 

[9] study used a 30 x 34 EMFi sensor stripe matrix under normal flooring. These authors 

concentrated on identifying users, but this type of system is also suitable for positioning 

purposes. However, as EMFi only reacts to changes in pressure, it cannot be used to detect 

immobile persons, such as a person who has fallen to the floor and lies still. 

All the above-mentioned pixelated surface systems require a lot of wiring. They are also 

fixed: resizing or reshaping them would require modifications to the wiring, the hardware, 

and the software. 

Alternatively, the Z-Tile system [14] uses modular nodes that can be connected to create 

positioning areas of various shapes and sizes. Each node has 20 hexagonal force-sensitive 

resistors on its surface. Because of their shape, the nodes can interlock and be self-holding, as 

shown in Figure 2. 
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Figure 2. A single Z-Tile [14] 

Moreover, the Z-Tile system does not require a separate data wire for each node. Instead, 

the interlocking tiles form a self-organising network. One node operates as a power source 

and a data gateway for the network, as Figure 3 illustrates. The main disadvantage of the 

system is that the volume of the data being produced by the Z-tiles is so high that the data 

processing is problematic if large areas would be covered with Z-tiles. 

 

Figure 3. Data Routing in a Z-Tile Carpet [14] 

Another scalable system is Smart Carpet [15]. To create a Smart Carpet, sensor electronics 

are embedded in textiles and woven into a carpet, as Figure 4 displays. Each node is 15 x 15 

cm and operates as one plate for a capacitive sensor. Walking on the carpet activates these 

sensors. One can modify the shape and size of the carpet by cutting it between the nodes. 
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Figure 4. The Smart Carpet Sensor Node [15] 

As Figure 5 illustrates, the computer that performs the position calculations connects to 

only one node. When a footstep activates a node, that node sends a sensor activation packet to 

the neighbouring node, which then routes it along the shortest path to the computer. 

 

 

Figure 5. The Smart Carpet Structure [15] 

3. Thermal Infrared Sensors 

Infrared light is part of the electromagnetic radiation spectrum, with wavelengths from 750 

nm to 1 mm. The infrared spectrum further divides by wavelength into five subsections. 

Wavelengths from 8 to 15 µm belong to the long-wavelength infrared spectrum subsection. 

This part of the electromagnetic spectrum corresponds to wavelengths that radiate from 

objects with temperatures somewhere between 0 and 70 °C [16]. 

Fluke Ti55/20, an infrared camera used in [17], operates in this range. The camera has an 

image resolution of 320 x 240 pixels and uses uncooled microbolometers. Microbolometers 
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are tiny (down to 17 µm) infrared detectors. When a microbolometer absorbs infrared light its 

temperature increases as well as its electrical resistance. This change in electrical resistance 

can be measured to produce a thermal image from all the microbolometer cells. For instance, 

using this technology, [18] created a thermal image database of healthy people that 

researchers can use for reference in the diagnosis of various diseases or in sleep research.  

The infrared cameras record the radiation at the same range as the human body emits it. 

Figure 6 shows the blackbody radiation curve of a human body at normal body temperature of 

37 °C. One can use the blackbody radiation model to compare the thermal or electromagnetic 

radiation of different objects. An ideal blackbody absorbs all the radiation directed at it, but 

also acts as a perfect emitter. 

 

 

Figure 6. Blackbody Radiation Curve of Human Body at Normal Body 
Temperature of 37 °C [18] 

In Figure 6, the irradiation power peak is at approximately 9.40 µm. According to Wien’s 

Law ([16], [20]),  

  
        

 
          

where T is 34 °C. The above equation derives from Planck’s law. So both references [16] and 

[20] point out that for a person with normal body temperature measured to be 37 °C, the 

irradiation power is at maximum approximately at the temperature of 34 °C. Thus, thermal 

imaging devices used for human subjects should operate in this region of long-wavelength 

infrared light. In addition, the long-wavelength infrared spectrum lies within the atmospheric 

window. Inside this window, the attenuation of thermal radiation in air is very low, which 

results in greater contrast in the acquired image [16, 21]. 

According to the database measurements in [17], a person’s head appears as the warmest 

part of the body in thermal images. This is even truer for positioning purposes, since other 

body parts are usually clothed and clothing suppresses the recorded level on the infrared 

image. 

 

3.1. Technologies 

Many thermal imaging devices use microbolometers [22]. These devices are relatively 

expensive. For example, the RAZ-IR Mini, the camera used in [23], costs almost €8000 [24]. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol.8, No.1 (2014) 

 

 

Copyright ⓒ 2014 SERSC   77 

Furthermore, quantum detectors, which use a photoelectric effect, are not very suitable for 

large-scale usage, because they need to cool down to 70 K. Likewise, Golay cell technology 

is not suitable for large-scale usage, because it is relatively sensitive to vibrations [21]. A 

Golay cell is a gas-filled chamber enclosed in an infrared absorbing material and a flexible 

membrane. When infrared light strikes the cell, the light heats the gas, the gas expands, and 

the system records the membrane’s movement [25]. Though these two technologies can be 

accurate in controlled environments, they are not that suitable for smart home environment.  

Pyroelectric sensors and thermopiles are more affordable alternatives. The pyroelectric 

sensors detect changes in heat flow and generate electrical signals; in other words, a 

polarisation change and the piezoelectric effect induce an output change. Similarly, 

thermopiles, which consist of an active or passive thermocouple, generate signals that depend 

on the difference between the object and ambient infrared radiation; the Seebeck effect 

creates the output change. Thermopiles have a response time between 20 and 50 ms [16, 20. 

21]. Honorato et al., [26] discuss the differences between thermopile and pyroelectric sensors 

in more detail.  

Many applications also use Fresnel lenses to divide the field of view [19, 20, 27-29]. For 

instance, Shankar et al., [19] placed a Fresnel lens on a PIR325 pyroelectric sensor, whereas 

[19] and [27] used quad-type sensors. With quad sensors, the output consists of the strength 

of the pyroelectric/passive infrared sensor signal and the sensing element that the target 

activated. In [28], Yoshiike et al., constructed a pyroelectric detector array. They placed this 

custom-made pyroelectric rotating sensor on the ceiling. In [29], Wu and Li placed an 

additional mask on top of the lens. One can also use a lens system to control thermopiles’ 

field of view [16]. 

Figure 7 demonstrates the beam division of the Fresnel lens for different sensing elements. 

In one sector, the further the target is, the less accurate the measurement will be. Distance 

detection is effective within a range of approximately 10.0 m [29]. 

 

 

Figure 7. A Lens System Dividing the Tracking Area into Sectors [28] 

3.2. Applications 

A very attractive option in positioning is to use hybrid technologies. For instance, [30] 

effectively measured the occupancy of a room by combining data from pyroelectric sensors, 
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carbon dioxide sensors, and relative humidity sensors. Similarly, [31] combined a thermal 

infrared localization (ThILo) scheme, which uses thermal sensors, with the Cricket indoor 

positioning system, which uses ultrasound in combination with an RF signal. However, the 

Cricket system uses a tag, so it is not a passive positioning system. In [32], Zhou et al., 

studied gait by using a pyroelectric sensor network. The drawbacks in different sensing 

technologies can be overcome by using simultaneously another technology. 

For instance, with thermal imaging, the contrast between the target and its surroundings 

can change, for example, as day turns into night. This presents a challenge when analysing 

thermal camera images. To achieve better target recognition, Chetty [33] combined colour 

image data with thermal image data. She first processed the thermal image into the 

background and foreground layers using the expectation-maximisation algorithm. The 

background did not contain dynamic objects. Chetty then compared the foreground shape and 

appearance cues with a database of thermal images of pedestrians for exact positioning and 

pose. 

Depending on the application and the environment, the thermal imaging system 

requirements are different. For indoor environment, the technology used in [23] was able to 

identify the warm targets in the field of view (RAZ-IR mini thermal camera) and produce a 

tactile feedback. This study used Brailliant 32, a tactile imager, to describe the thermal 

environment. With this device, a blind user can scan the imager board, which has a tactile 

pixelated surface, with his fingers to ‘visualise’ the thermal map of his surroundings. 

Farhat et al., [34] presented an interesting calibration method. In their study, they 

calibrated the system, which measured an intra-vehicular thermal environment, using a Peltier 

plate. They combined the carbon dioxide concentration data with the thermal image data to 

sense the presence of people inside a vehicle. 

Overall, the accuracy of the more expensive thermal camera systems is higher than that of 

the discussed pyroelectric and thermopile applications. The angular resolution of the latter 

applications is often only a few degrees, and the applications mostly use the angle of arrival 

and triangulation in their position derivation. The accuracy of the pyroelectric and thermopile 

applications is approximately 20 cm, depending on the object’s distance from the sensors 

[16], [21, 35]. 

 

3.3. Context 

Unlike in normal images, in thermal images, illumination is not a significant problem. 

However, metallic surfaces create difficulties, as they are good heat conductors and infrared 

radiation reflectors [19]. Rather than simply recording the environments on stage, it can be 

easier and cheaper to simulate it beforehand. One can gain better understanding of these 

conditions by creating an infrared simulation environment using OpenGL, as the researchers 

did in [19]. Here, the applied techniques of radiosity and ray tracing create a greater 

computational burden in the simulation environment, but they help to describe the real 

environment in more detail. 

In thermal positioning, the sensor network fusion and data processing depend heavily on 

the context. The environment might have dynamic heating elements like lamps or heaters that 

can disrupt the thermal positioning system’s performance. Thus, one should carefully 

consider the sensor number, type, and placement. For instance, [36] emphasised the region of 

interest—the section of a thermal image that has a dynamic target, like a human or a lamp. 

Naturally, systems need to identify and interpret all the important heat sources correctly. 

Above all, multi-target tracking is perhaps the most challenging task in thermal 

positioning, especially with low-resolution thermal detector sensor networks. For example, it 

is difficult to determine the true number of people inside a room with low-resolution devices. 
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Redundancy is one answer to this problem. To combine different sensor data, [36] used 

principal component analysis. However, algorithm development is perhaps the most 

important aspect of a multi-target tracking scheme. In [37], Kemper and Hauschildt 

highlighted the drawbacks of multi-hypothesis tracking and joint probabilistic data 

association filters, such as the need for a fixed number of targets. In [16], Hauschildt and 

Kirchhof favoured the more dynamic sequential Monte Carlo probability hypothesis density 

filter for multi-target tracking. With respect to future applications, the contrast invariant 

descriptor for thermal images presented in [22] will certainly aid multi-target tracking 

systems developers. 

 

4. Sound Source Localization  

Sound source localization methods fall into two main categories. In the first category, 

sometimes identified as active sound source localization, as in radar and sonar, the system 

sends out a pre-set signal and receives an echo signal from the target. In the second category, 

the system only receives target-generated signals, meaning these systems can only locate 

activities that produce sound [38]. 

The localization of a sound requires detection by a suitable sensor such as a microphone. 

Usually, sound source localization uses a microphone array consisting of three or more 

microphones [39]. Microphone pairs, i.e., two microphones, can deduce the direction of a 

sound from the time difference in sound arrival, as presented in Figure 8. This is the time 

difference of arrival (TDOA) method. If sensors in multiple locations measure the direction of 

a sound, the system can calculate the location of the sound source using triangulation. One 

can increase the accuracy of the source location estimation by increasing the number of 

microphones, as long as all the microphones and amplifiers have equal frequency 

characteristics [39]. 

Sound source localization algorithms fall into three main categories: TDOA [40], steered 

beamforming [41], and high-resolution spectral estimation [42]. TDOA, introduced above, is 

the most widely used method. Steered beamforming, or steered response power, calculates the 

delay value by forming summation signals of signals from two different microphones with 

multiple delay values. The sound source location calculation uses the delay value that 

maximises the summation signal, identified here as the actual delay. High-resolution spectral 

estimation determines the impulse response between the sound source and the receiving 

microphone and uses this impulse response to estimate the time delay [42]. 

Indoor sound source localization faces several challenges. These challenges include 

background noise, reverberation (i.e., echoes), the broadbandness of sounds, movement of the 

sound source, and simultaneous sound sources [43]. For example, reverberation is a 

significant problem in TDOA analysis, as TDOA methods assume that the sound signal’s 

route between the sound source and the recording sensor is straight, as Figure 8 demonstrates. 
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Figure 8. Wavefront Propagation From a Sound Source to a Microphone Array. 
The Wavefront Reaches Microphones M1–M3 with Delays d1–d3, with Respect to 

M0. One can Calculate the Location of the Sound Source according to these 
Delays. Modified from [44] and [45] 

With respect to practical applications, academic studies have used sound source 

localization to locate speakers in a meeting room [46-48], to detect face-to-face conversations 

in a home environment [43], to conduct real-time sound source localization in a hall [39], and 

to detect the user’s position in robotic applications [49]. Another popular and well known 

application of sound source localization using a microphone array is Microsoft’s Kinect—a 

motion sensing input device (http://www.microsoft.com/en-us/kinectforwindows/). 

 

 

Figure 9. Microphone Arrays. Top Left, a Scalable Microphone Array [50]. Top 
Right, a Microphone Array for Detecting Footsteps [51]. Bottom Left, a 

Miniature Microphone. Bottom Right, a Miniature Microphone Embedded in a 
Frame [43] 

As Figure 9 illustrates, microphone arrays can have various shapes and sizes, and small 

microphones can be embedded in everyday household items, such as picture frames, or in 

home structures, such as ceilings [43, 51]. Embedding microphones in movable objects can 

make it relatively easy to install a sound source localization system in an existing household. 

Using wireless methods to transfer localization data between separate microphone arrays can 

further simplify the installation process. 

M0 M1 M2 M3

Y

X
d1

d2

d3

Sound source
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Despite the relative ease of installation, the computational burden in sound source 

localization is relatively high, as systems must calculate a cross-correlation between signals 

received by multiple microphones. However, the data throughput of a microphone array is 

significantly less than that of a camera-based system [43]. 

 

5. Ultrasound 

The speed of an ultrasound wave is relatively low—about 345 m/s. Thus, one can precisely 

measure the time it takes an ultrasound wave to travel from one point to another [1]. There are 

two methods used in implementing ultrasound positioning: time of flight (TOF) and TDOA. 

TOF methods determine an object’s position by measuring how long a signal takes to travel 

from the transmitter to the receiver, whereas TDOA methods determine an object’s position 

by calculating the difference between the travel times of signals from two transmitters to the 

receiver. However, ultrasound positioning systems that use TDOA methods are sensitive to 

noise, which can be a problem, especially at long ranges [52]. 

In traditional ultrasound positioning systems, individuals need to carry mobile receivers to 

be localised. However, Nishida et al., [53] have created a device-free ultrasound positioning 

solution. Their system employs an ultrasonic radar technology used in medical diagnosis. 

Transmitters generate ultrasound signals, and the system detects a person’s position by 

receiving these signals after they reflect off the person’s head and calculating the signals’ 

TOF. 

Figure 10 demonstrates the principle of calculating the location of a person’s head. One 

can calculate the propagation distance, L, from the TOF and the known speed of the signal. If 

the positions of the transmitter and receiver are known, determining the head’s location is 

straightforward. 

 

 

Figure 10. Principle of Calculating the Location of a Person’s Head [54] 

Nishida et al.’s, [53] pilot system detected both the horizontal position and vertical 

position of a person’s head, meaning it could detect whether a person was standing or sitting, 

with a location detection accuracy of approximately 5 cm. Hori and Nishida [55] successfully 

tested the system developed in [53] and [56] in a nursing home. They only used the system to 
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monitor the position of a person’s head on and around his or her bed and used other location 

systems elsewhere.  

This system is suitable for similar applications that require accurate position information in 

a very small area. However, this promising system’s drawback is that it requires numerous 

sensors. The pilot platform was 1.8 x 1.2 m and had 18 transmitters and 32 receivers. 

Covering a whole house or an apartment would require the installation of thousands of 

sensors—an expensive and burdensome operation. 

 

6. Electric Field 

The human body conducts low-frequency signals well; this enables the electric field 

positioning of human beings. Zimmerman et al., [57] first introduced the idea of using 

electric fields to locate humans in 1995. He presented two modes of operation for electric 

field localization: the human shunt and the human transmitter. 

In the human shunt mode, a transmitter electrode emits an electric field and a receiver 

electrode senses the electric field. The potential difference between the electrodes generates a 

displacement current that flows from the transmitter to the receiver. When a person enters this 

electric field, their body shunts the electric field to the ground and decreases the amount of 

displacement current that reaches the receiver. This decrease in displacement current is 

proportional to the person’s proximity to the receiver.  

In the human transmitter mode, the system capacitively couples a low-frequency energy to 

a person’s body, making the body act as an electric field transmitter. The system measures the 

displacement current, which increases as the person moves closer to the receiver electrode. 

In 1998, Smith et al., [58] introduced a third operation mode: the loading mode. This mode 

uses only one electrode to create the electric field between the electrode and a person’s body 

and to measure the current pulled from the transmitter into the body. 

Figure 11 illustrates the three operation modes presented above. The location methods 

introduced later in this section are based on these modes.  

 

 

Figure 11. The Operating Modes of Electric Field Localization [58] 

With respect to installation, electric fields can propagate through insulators. Sensors can 

thus be hidden in physical structures, making home electric field positioning systems almost 

invisible to users. These systems are also relatively inexpensive, as electrodes can be 

manufactured from relatively cheap materials such as copper foil. However, installation can 

be rather arduous. 

In the following sub-sections, actual applications implemented based on the electric field 

positioning, are discussed. 

 

6.1. TileTrack 

TileTrack [59] operates by measuring the capacitance between floor tiles and a receiving 

electrode. To prevent stray capacitances formed with the environment from affecting the 

results, this system uses the human transmitter mode. One can easily transfer the system to a 

new location, as it requires only a minor recalibration after reassembly. 
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Figure 12. The Capacitance Model of the System [60] 

The system operates according to the capacitance model shown in Figure 12. CO is the 

constant offset capacitance between the electrodes without a person present. CF is the 

capacitance between a person’s feet and the transmitter electrode beneath a floor tile. CB is the 

capacitance between a person’s body and the receiving electrode. When a person moves into 

the tracking area, CF and CB change. When a person is standing on a tile, CF increases and the 

transmitted signal is coupled to the body. The transmitted signal flows through CB to the 

receiving electrode, and the system measures this current flow. The system measures the total 

capacitance, which is the series capacitance of CF and CB parallel to CO, from the measured 

current. The system continuously scans the floor tiles one at a time and measures the total 

capacitance between the tile in question and the receiving electrode. It determines the user’s 

location by comparing the measured capacitance values to the calibration values. This process 

uses a 32 kHz measurement frequency—the frequency at which the human body acts as an 

almost perfect conductor. 

The demo platform used 9 60 x 60 cm interlocking floor tiles and 24 30 x 30 cm 

interlocking floor tiles to create a 3.0 x 1.8 m floor. The transmitting electrodes, made of thin 

copper plates, were glued to the bottom surface of the tiles. The demo tested different kinds of 

wires, metal sheets, and a silver-plated textile shelter as receiver electrodes. The demo 

platform achieved an accuracy of 15 cm for standing persons and 41 cm for walking persons. 

The system was able to track multiple persons, if those persons stayed at least one tile away 

from one another. In later studies, Valtonen et al., [61, 62] proved that this localization 

technology could also determine a person’s posture and height. 

For this type of system, the construction costs are quite low: approximately €16 per m
2
 for 

electronics and cabling and €4 per m
2
 for electrodes [63]. However, the installation is arduous 

if the transmitter electrodes are installed under the floor surface. 

 

6.2. Electric Field Resonance Coupling 

The system proposed in [64] and [65] resembles the TileTrack, but uses electric field 

resonance coupling. In practice, this means that the resonance that occurs inside a person’s 

body amplifies the electric field transmitted to that person by capacitive coupling between the 

transmitter and the person’s body. The system generates this resonance by using the resonant 

frequency of an ungrounded person (70 MHz) as its measurement signal frequency [65]. The 

system can achieve a wider sensing range and better accuracy by using this resonant 

frequency. Simulation results indicated that this system can achieve an accuracy of 5 cm. 
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6.3. ELSI 

The Electric Sensors with Intelligence (ELSI) system is a location system that operates in 

the loading mode; it measures the capacitance between a transmitter and the ground [66]. The 

measurement signal is fed to a single transmitter at a time; all the other sensors are grounded. 

If there is a conductive object, such as a person, near the actuated electrode, the displacement 

current flowing from the object through the air to the surrounding grounded sensors increases. 

The system measures the displacement current from each sensor and uses the current and the 

physical location of the sensors to determine the person’s position. Figure 13 presents the 

ELSI measurement principle. 

 
 

Figure 13. ELSI Measurement Principle [67] 

The electrodes are 30 x 30 cm metal thick-film squares that are installed under the floor 

surface, so the system is completely undetectable. The size of the covered floor area is 

scalable, but the pilot platform described in [68] was 4.5 x 4.0 m. This pilot achieved a mean 

positioning error of 21 cm for five walking persons. 

Further development of the ELSI system has produced systems that are suitable for use in 

health care environments and are able to detect if a person falls [69, 70]. ELSI systems are 

now commercially available and in use in nursing homes. 

Construction and installation costs for ELSI systems are very similar to those of TileTrack 

systems. The cost of electronics and electrodes is quite low, but the installation is arduous and 

expensive, especially if installed in an existing home [69]. 

 

7. Infrastructure-mediated Sensing 

Infrastructure-mediated location sensing uses pre-existing structures in a building for 

positioning purposes. These structures can include air conditioning channels [71], electrical 

wires and switches [72], and water pipes and plumbing [73]. This type of system does not 

require the installation of new sensing infrastructure in a home. Hence, it is easy to install and 

maintain and usually inexpensive and aesthetically pleasing. However, the location resolution 

of infrastructure-mediated location sensing systems is low compared to other positioning 

systems. 

 

7.1. Air Pressure Location Sensing 

According to Patel et al.’s, [71] research, the pressure differential between the supply and 

return chambers of a mechanical ventilation system’s main unit changes when people move 

around in an apartment. Pressure sensors installed on the air filter in a ventilation system’s 
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main unit can measure this pressure differential, also known as static air pressure. The sensors 

are connected to a computer that performs the classification function. No other devices are 

required, so installation is easy. 

The positioning system detects when an internal door is opened or closed and when a 

person walks through a doorway. Opening or closing a specific door or walking through a 

specific doorway will generate a unique change in the static air pressure. Before operation, 

the system requires a training phase, during which the system learns which door or doorway 

causes which size of change. Also, the system can still detect changes in the static air pressure 

when the mechanical ventilation system is turned off, but its activity classification accuracy 

deteriorates significantly. 

When tested in four houses, the system correctly classified door transition events about 

75% of the time and people transition events about 64% of the time. The accuracy depended 

heavily on the structure and location of the ventilation system. For instance, if an air vent was 

a significant distance from an interior door, the accuracy of the events related to that door or 

doorway were lower. 

By combining door and people transition events, the system can provide reasonable 

predictions about which room a user is in. For many applications, there is no need to know 

the user’s more precise location. However, the pilot platform described in [71] did not address 

multiple simultaneous events, which systems will need to interpret in real environments. 

As this air pressure location sensing system uses pre-existing ventilation infrastructure and 

requires only one sensing unit, the installation and manufacturing costs are low. The sensing 

unit costs about €80 at low volumes. The system is also completely invisible to users. 

 

7.2. Residential Power Line Location Sensing 

Another research conducted by Patel et al., [72] exploited the observation that electrical 

switches and devices create electrical noises on residential power lines. Separate devices and 

switches produce dissimilar noises; even two similar light switches can produce dissimilar 

noises. Accordingly, one can determine which device or switch is turned on or off by 

measuring the noise. For measurement, the researchers used one measuring module that was 

plugged into an electrical outlet in a house. They connected the measuring module to a 

computer that analysed the noise and inferred the source. 

This system is more suitable for context or activity detection than location tracking. 

However, one can still use this system to determine an inhabitant’s position. For example, if 

the system detects that the bedroom lights were turned on, it can infer that the inhabitant has 

just entered the bedroom. 

Patel et al., tested this system in six houses and detected 19 separate devices. The accuracy 

of electrical event classification was about 90%. In one house, a background noise interfered 

with the classification. The age, condition and structure of the houses’ electrical installations 

also had a detectable effect on the system’s accuracy. 

The system requires a learning period before operation, and can only detect fixed electrical 

devices. However, installation is extremely effortless, and manufacturing costs are low. 

One alternative is a system that recognises electrical devices by measuring the electric 

current. This system requires the installation of a current sensor near every appliance. This 

provides precise results, but installation is very laborious [18]. 

 

7.3. Location Tracking by Water Usage 

Rather than detecting air pressure or electrical activity, Fogarty and Hudson’s [73] 

infrastructure-mediated location sensing system identifies activities that use water. As these 
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activities usually occur in specific locations in a home, this system can also identify the user’s 

location. 

In practice, the system requires the installation of a few microphone sensors at critical 

locations in a home’s water distribution infrastructure. The system uses the water usage 

patterns that the sensors identify to determine which activities are occurring.  

The pilot platform implemented in the study reliably identified the activities of six sources: 

washing machine, dishwasher, shower, toilet, bathroom sink, and kitchen sink. The 

identification accuracy was almost 100% for washing machine and dishwasher activity and 

over 90% for shower and toilet activity. However, the accuracy for sink use fell between 55 

and 88%. The pilot platform used four sensors and a laptop computer that collected data from 

the sensors and ran the pattern-based recognition algorithm.  

This system requires long timescales for event detection. For example, the system might 

require a 10-second sample before it can accurately conclude whether the kitchen sink or the 

bathroom sink is in use. This delay naturally increases the chance of overlapping events, 

which leads to worse accuracy. 

The presented system is very inexpensive and easy to install, as it requires only a few 

sensors. However, it provides location information only when the user is using water, so it is 

more of an activity recognition system than a location tracking system. 

 

8. Radio Frequency 

Radio frequency is a rate of oscillation in the range of 3 kHz–300 GHz. Several RF 

technologies, including Bluetooth, RFID, Wi-Fi, and Doppler radar, have been used for 

positioning. These RF solutions usually use TOF or received signal strength indicator (RSSI) 

as measurement signals [74]. The following sections will discuss Wi-Fi and Doppler radar. 

Bluetooth and RFID solutions require users to carry devices with them, so they are beyond 

the scope of this paper. 

 

8.1. Wireless Networks 

Wireless network localization systems that require users to carry tags with them have been 

available for decades. However, Youssef et al., [2] have developed a device-free RF system. 

They noticed that the human body acts as an absorber and attenuates wireless signals. By 

measuring the signal strength or TOF of wireless signals, an RF system can detect changes in 

an environment and correlate them to a person’s location. One could possibly use already 

installed Wi-Fi networks for this purpose [75]. 

Youssef et al.’s, pilot system used signal transmitters, which were normal Wi-Fi access 

points, monitoring points, which could be any device that is capable of receiving a Wi-Fi 

signal, and an application server. They used an 802.1 1b environment, which runs at the 2.4 

GHz frequency range. They selected the RSSI provided by the access points as a 

measurement signal. Their pilot setup used a 5.0 x 5.0 m area with two access points and two 

monitoring points.  

Before operation, this system must learn the signal strengths at all locations in the area of 

interest when there is no human presence. The system uses this signal strength information to 

create a radio map. However, the multipath effect and other phenomena that occur in indoor 

environments can interfere with the construction of a radio map. In its normal operating 

mode, the system compares the received signal strength values to the values stored in the 

radio map. This is known as the fingerprinting method [76]. 

The average accuracy achieved in a controlled laboratory environment was approximately 

15 cm. In real environments, the accuracy is worse. For example, Seifeldin and Youssef [77] 
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installed this system in the main entrance and corridors of a real building using three access 

points and two monitoring points. In this arrangement, the positioning area was about 300 m
2
. 

The median distance error was 6.7 m. In [78], the authors continued working on the system’s 

positioning algorithms and achieved a median distance error of 1.8 m with the same setup. 

This system can only track one person at a time. The researchers in [79] realised that the 

physical configuration of the system, meaning the placement of the monitoring and access 

points, affects the system’s accuracy remarkably. One can achieve the best accuracy by 

positioning the monitoring and access points so that a person’s movement in the area directly 

affects the lines of sight between the points. 

 

8.2. Doppler Radar 

The Doppler effects occurs when a transmitter moves relative to a receiver. The 

transmitted signal is squeezed as the transmitter approaches the receiver, and the frequency of 

the transmitted signal rises. Researchers mostly discuss the Doppler effect in relation to 

acoustics, but the concept applies to any kind of wave propagation [80]. 

Speed measurement with radar is based on the Doppler Effect. The radar transmits a signal 

with a known frequency; the target reflects this signal back to the radar, and the system 

measures the frequency of the returned signal. The difference between the frequency of the 

returned signal and that of the transmitted signal is proportional to the velocity of the target 

[81]. 

When a sensor is used to receive a frequency that varies with time due to the Doppler 

Effect, the data creates a Doppler curve. Figure 14 displays the Doppler curve of a passing 

object. One can estimate the object’s distance and velocity based on the shape of the Doppler 

curve [80]. This is the idea behind Doppler localization.  

 

Figure 14. Doppler Curve [79] 

Lin et al., [82-84] have researched how to use Doppler radar as a tracking system. 

However, their studies have focused more on detecting human presence and identifying 

different types of movements, such as the swinging of arms and legs, instead of defining a 

person’s location.  
As it can detect the movement of body parts, Doppler radar can identify a user’s activity in 

many cases. Moreover, as Doppler radar is capable of through-wall tracking, law enforcement 
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and military applications regularly employ it. However, as Doppler radar is only able to track 

moving objects, it cannot be used to track a person who is standing still. 

 

9. Forthcoming Technologies 

This section presents technologies, systems, and ideas that could be used for device-free 

indoor positioning but are not yet being actively studied. 

 

9.1. Optical Sensors 

Optical sensors could also position humans. The positioning could employ two modes: the 

reflective mode and the shadow mode. In the reflective mode, the target reflects a light signal, 

and in the shadow mode, the target prevents a light signal from reaching the sensor. 

For instance, LiteFoot is an optical system that tracks dancers’ steps and can be used in 

dance training. The system uses a matrix of optical proximity sensors [85]. Dance steps can 

be as rapid as 30 steps per second, so the system’s response time must be fast. The system 

therefore scans the sensors every 10 ms.  

The pilot platform was 1.8 x 1.8 m and had 1936 sensors. The researchers tested the 

system in both operating modes [86]. In the reflective mode, the sensors emitted light and 

detected the light reflected back by the dancers’ soles. In the shadow mode, the floor was 

illuminated from above and footsteps stopped the light from reaching the sensors. The 

achieved accuracy was high, about 40 mm, and identical in both modes. 

 

9.2. Carbon Dioxide Sensors 

Systems could also measure the amount of carbon dioxide in the air to position a person. 

As [87] explains, the carbon dioxide concentration near a person is substantially higher than 

elsewhere. So far, systems have used carbon dioxide sensors to detect human presence [30], 

[34]. However, no actual positioning systems that use this approach have been developed. 

 

9.3. Detection of Vital Functions 

Finally, researchers could develop positioning systems that observe vital functions. For 

instance, in [88], Zakrzewski et al., describe the use of high-frequency radar for non-contact 

heart and respiration rate measurement. As this system is able to detect respiration and 

heartbeat remotely, its technology could be applied to position human beings. 

 

10. Discussion and Conclusion 

In intelligent environments, user location information is vital. Moreover, especially when 

used in homes, a positioning system must be passive, device-free, and unobtrusive. This paper 

has presented the main technologies that can be used in such positioning. 

The variety of the features available in positioning systems is wide, and every system has 

its own pros and cons. Whereas one system may provide more accurate location data, another 

system may be cheaper or easier to install. Table 1 compares the price, ease of installation, 

accuracy, and obtrusiveness of the positioning technologies presented in this paper. 

The discussed positioning systems are purpose-built; none can be easily extended for use 

in all cases. The optimal option depends heavily on the requirements set by the application 

that uses the position data. Other conditions, such as the required degree of accuracy, whether 

the positioning framework can be installed during the construction of the home, and the funds 

available, can also significantly influence selection. 
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Technically, the best solution is usually a combination of two or more technologies. For 

example, [89] used thermal infrared sensors in conjunction with infrastructure-mediated 

sensing to follow several people simultaneously, whereas [12] used Doppler radar and 

pressure sensors in tandem. The most suitable combination of technologies depends entirely 

on the case. 

Research in this area continues. In the near future, cheaper and more accurate systems will 

be available and researchers will publish entirely new solutions.  
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