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Abstract 

In this paper, we introduce an interactive visualization system, bikesharingatlas.org, that 

supports the explorative data analysis of more than 468 bike-sharing networks worldwide. 

The system leverages a multi-coordinated view approach and innovative interaction 

techniques can help, for instance, to expose capacity bottlenecks, commuting patterns, and 

other network characteristics. Our broader goal is to illustrate how visual analysis can be 

used for exploring distributed, heterogeneous data from smart cities. Based on our 

collaboration with different target users, we present usage scenarios that show the potential 

of our approach to understanding bike-sharing and urban commuting behaviors. 
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1. Motivation 

The majority of the world's population is living in urban areas, and this proportion 

continues to grow. An increase in efficiency is needed for cities to function, and sustainable 

infrastructures will be essential to accommodate larger numbers of people. As digitization 

has become an integral part of our life, massive amounts of data from a variety of sources 

are generated continuously in cities worldwide. Leveraging this data intelligently offers 

great potential towards smarter and more efficient cities. 

Although having these immense datasets at our fingertips, we often lag behind in 

supporting people to intelligently leverage the huge amount of data that is produced daily. 

A city planner might want to identify and better understand commuting patterns in order to 

develop more robust and cohesive transportation infrastructures. A sociologist wants to 

study local effects of job density and residential segregation on society, or wants to perform 

other data-intensive tasks like cross-country comparisons of urbanization. However, 

currently most of the data comes in machine-readable form only and hence is hard to access 

for people without sophisticated computational and statistical skills. 

In this paper, our goal is to illustrate how interactive visualization can help to open the 

data that is produced in smart cities to a wider audience. We believe that interactive 

visualization can help us to engage users, and to interactively explore and understand 

collected data from smart city sensors, in order to make life more comfortable, safer and 

sustainable. 

Towards this goal, we take public bike-sharing systems as an example and show how 

visualization can help to better leverage the data produced by these systems. Bike-sharing 

systems have been established as permanent components in urban passenger transport since 

1996 [1]. Being increasingly digitized, these systems nowadays produce data that can reveal 

interesting insights, not only into patterns of bicycle usage, but also underlying spatio-

temporal dynamics of a city, as Froehlich et al., [2] and Wood et al., [3] pointed out. 
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As a first step, we recorded continually, over a period of 17 months, distributed data 

from several hundred bike-sharing networks worldwide. We aggregated the data, combined 

it with other data sources and derived characteristic network metrics. 

In the course of an iterative design process we built a visualization tool with a variety of 

viewing options to offer multiple different perspectives on the data. Various design 

considerations were inspired and strongly shaped by our interactions with different target 

user groups: operators of a bike-sharing network, urban sociology researchers, public 

authorities, city planners, and the general public. To illustrate the value of this visualization 

approach, we provide four different usage scenarios: (1) how visualizing long-term 

recorded data can help to better understand commuting patterns in a city, (2) how the 

combination with other data sources can reveal interesting insights, (3) how our approach 

allows to compare systems world-wide through a shared global perspective (4) and how the 

general public can benefit from recording and visualizing this data. While our focus is on 

bike-sharing networks, we believe that—with the proliferation of globalization and mega 

cities—such data-driven and visual approaches will become increasingly important for 

other aspects of open urban data as well. 

In summary, our main contributions are: 

 We recorded and made openly available a repository of open bike-sharing data 

from 380 different cities over a period of 17 months and additionally data from 88 

cities over a period of 4 months. 

 We designed an online interactive visualization that makes the data accessible to 

users with a wide range of expertise. 

 We describe a set of four usage scenarios to illustrate the benefits of our approach 

for different target users. 

 

2. Related Work 

Bike-sharing data has been used in different contexts before. Here, we review this 

previous work with the goal to contextualize our work and provide the interested reader 

with further pointers into the visualization and data analysis literature. 

The most prominent analyses of bike-sharing data this far have been statistical analyses. 

The goals of these analyses were, for instance, to help system operators to improve the 

location of stations [19], or re-balance bikes between stations [20]. While these approaches 

look for an algorithmic solution for a clearly defined task, our goal is different in that we 

want to make the data accessible, visible, and explorable to a wide range of potential users. 

Towards this goal, we took the approach of interactive visualization, which is well-

known to support such exploratory endeavors [21, 22]. It provides an essential way to 

support the user in a hypothesis generation and decision-making process. 

There exist some efforts that focus on the visual analysis of individual bike-sharing 

networks. Studying the spatial distribution of journeys and peak-time behaviors in London 

[3, 23], analyzing the system dynamics over a 10-month long period in New York City [24] 

or providing a tool to interactively explore the impact of demographic and weather factors 

on bike-share ridership in Boston [25]. In a broader context, there are several approaches 

that use other data sources in conjunction with visualizations to solve problems that are 

abstractly similar to the one of bike-sharing networks. These works use other smart city 

sensors, such as mobile phone data [26], public transport data [27] or social media data [26] 

to explore opportunities that arise from this type of data-driven analysis for smart cities. 

Ferreira et al., [28] used taxi trip data and Miranda et al., [29] utilized meta-data of Flickr 

images to visually explore and understand behavioral patterns in New York City. With these 

tools we share the goal to make the data accessible and to provide different levels of 

analysis. However, all these approaches take a local perspective on one city and are often 
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limited to a specific target group, while our goal is to investigate how to expand such 

approaches to a more global level and for a broad range of users. 

 

 

Figure 1. Screenshots of the Web Interface when Focused on a Specific 
City: (a) The Fill Level Analyzer View Exposes Bike-Sharing Commuting 

Behaviors in London, U.K. Each Line Represents an Individual Bike-Sharing 
Station and Shows the Daily Average Utilization. Selected Stations are 

Highlighted in all Coordinated Views. (b) Current Overview of Station Fill 
Levels in Paris, France. Tooltips Help to Predict the Availability of Bikes and 
Empty Docks at Certain Times during the Day. As Shown in the Legend on 
top of the Map, Blue Dots Indicate Full Stations, and Red Dots Empty Ones. 
Circle Size Encodes the Overall Capacity of a Station. (c) The Route Planner 

Shows the Fastest Bike-Sharing Route between Two Endpoints in Mexico 
City 

In terms of analyzing multiple cities, Austwick et al., [30] used statistics and 

visualization techniques to compare five different cities. Bargar et al., [31] proposed an 
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application for comparing usage patterns between different bike-sharing programs from up 

to three different cities and Nagel et al., [32] exhibited, in a public gallery space, several 

visualizations for casually analyzing three different bike-sharing networks. Most closely 

related to our approach are O'Brien [33], Meddin et al., [34] and the platform citybik.es [4], 

who all used map-based tools to show the locations of bike-sharing networks worldwide. 

Although these tools provide an overview of networks, they are based on very 

homogeneous data sources and do not take a long-term and contextual perspective, as we 

do. Meddin's Bike-sharing Map [34] is based on Google Maps and administered manually. 

 

(a) Interactive Filterable 
Map Provides a 

Geographical Overview of 
all Networks 

(b) Small Multiples are Good 
Indicators of the Size, 

Structure and Density Of 
Networks 

(c) Table View with Detailed 
Statistical Data of all 

Networks

Figure 2. Screenshots of Different Overview Components of the Tool 

It provides a high-level overview of bike-sharing programs around the world and 

includes also networks that are currently built or networks, for example in Asia, that don't 

provide live station data. Nevertheless, the navigation and the visual encodings weaken the 

usability. Citybik.es [4] uses the same information base as we do but is limited to showing 

live station fill levels. O'Brien's Bike Share Map [33] goes one step further by showing data 

from the last 24 hours but also does not offer a long-term perspective and the possibility for 

in-depth analyses. O'Brien et al., [7] proposed a classification of 38 systems based on 

spatio-temporal characteristics and demonstrated thereby the opportunities of a higher-level 

view. In contrast to this work, which is a static analysis and a discussion of various insights, 

our goal was an interactive visualization tool that allows for dynamic and interactive 

exploration of the underlying data. 

 

3. Data Acquisition and Preprocessing 

A bike-sharing network, by our definition, has a certain number of stations and often 

thousands of bikes circulating in the network. Every station is composed of docking spaces 

and has therefore a finite capacity. The number of bikes in each station, we call it fill level, 

is highly dynamic and also a significant factor for the functioning of a system. Many 

operators make their collected data available to the public and contribute to various open 

data initiatives. A few cities share detailed historical data about completed trips but the 

majority provide only information about current station fill levels. In our application we put 

the focus on this type of information, to cover as many cities as possible. 

We started collecting data from 380 networks at the beginning and added new networks 

continuously. Our database is now composed of data from 468 networks in 45 different 

countries, with more than 21,500 stations. We gathered the data through api.citybik.es [4] 

or directly from the websites of the bike-sharing operators. Over a period of 17 months and 

for 380 networks we have logged the number of available bikes and empty docks for each 

station in a 15 min interval. Additionally, we further recorded this information from 88 
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other networks over a 4-month period. The current version supports only a few systems 

from Asia, due to access limitations [4] but our tool provides interfaces to easily connect 

additional networks in the future. 

For data quality assurance purposes, we automatically verify if the geo-coordinates are 

plausible and lie in a specific region. We have also checked if the data from api.citybik.es 

is consistent with the information that is published on the websites of the respective bike-

sharing operators. If we observe that the fill levels of a network are not updated anymore, 

we disable certain features or the whole network. Due to the large number of networks and 

different data providers, outages and some uncertainties are inevitable. However, the 

aggregation of several months creates a balancing effect and counteracts these problems.  

For all 468 networks, we enhance the platform with hourly weather records (temperature) 

and elevation profiles (altitude of each station). We get access to current weather 

information via OpenWeatherMap1 and the elevation profiles were loaded by means of the 

Google Maps Elevation API2. Additionally, we use Google Maps API, Mapbox and Open 

Street Map for map-related services. 

In total we collected more than 830 million fill levels, that offer a large potential for 

various analysis and prediction tasks, while also confronting us with additional processing 

challenges. For this reason, we integrated multiple preprocessing steps to break down the 

database into smaller chunks that can be loaded during runtime. High-level network metrics 

are also generated in advance. In addition to the number of stations per network, their 

elevation profiles and the average number of docks per station, we calculated the following 

characteristics for filter, ranking and comparison purposes. 

 Average number of stations within a 2 km radius: Starting from each station we 

counted the number of reachable stations in a 2 km radius and averaged across it. 

This radius corresponds to the mean trip distance in Vienna. 

 Average nearest neighbor distance: For each station, we compute the distance to its 

nearest station. We then average these distances over all stations in this bike-sharing 

network. 

 Network activity: We defined this metric by counting the number of fill level 

changes for every station and normalized it to the network size, as illustrated by the 

pseudo code below (Algorithm 1). Due to the 15 min interval in our data retrieval, 

there is some natural uncertainty of this straight-forward measure for larger 

networks [5]. 

 Maximum elevation difference between the highest and lowest station without 

consideration of possible hills and altitude changes in between. 

Table 1. Calculating the Network Activity for each Bike-Sharing Network 

% n = selected_network  

n.fill_level_changes ← 0 

FOR EACH timestamp tk IN n.timestamps DO 

IF tk != tk-1 THEN 

    n.fill_level_changes ← n.fill_level_changes + 1 
END IF 

END FOR 

n.network_activity ← n.fill_level_changes / n.number_of_stations 

 

 

                                                 
1 https://openweathermap.org 
2 https://developers.google.com/maps/documentation/elevation/ 

https://openweathermap.org/
https://developers.google.com/maps/documentation/elevation/
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4. Bike Sharing Atlas 

We have developed an interactive visualization system (bikesharingatlas.org) to help 

users with a wide range of expertise to understand and intelligently leverage data that is 

produced by public bike-sharing systems worldwide. Figure 1-a shows a screenshot of the 

web tool and a video in the supplemental material provides further details on user 

interactions. 

In the following, we give an overview of the system and subsequently we present four 

selected usage scenarios. In this context, we also describe in detail primary visual and 

interaction design choices we made during the implementation process. 

 

4.1. System Overview 

Global view: Initially, the homepage of the web-platform presents an interactive map 

showing the geographical locations of all bike-sharing networks. To ease getting started, 

we also display example cities including the city of the user's current location, and those 

that are particularly interesting because of the available data. Two separate pages provide 

further high-level overviews of all networks, as shown in Figure 2 and 6. A small multiples 

view (Figure 2-b), for instance, provides a first impression of the size and density of the 

networks by visualizing them as individual vector maps. Sort functions, range sliders, and 

histograms allow users to explore and compare hundreds of networks in an interactive way. 

Local view: The user can then select a network of a particular city and go one level deeper 

revealing detailed information about this network (and city). A tab navigation and multiple 

views provide different perspectives on the selected network and support the user in the 

exploration process. The currently available detail views include: (1) Interactive map with 

current fill levels of the network, as shown in Figure 1-b; (2) Route planner, Figure 1-c, and 

in Figure 1-a: (3) Fill level analyzer with historical data; (4) Time series chart with the 

network activity and the superimposed temperature profile; (5) Other information about the 

network and the city, such as bike-sharing pricing, detailed information on trips (if 

available), or additional weather and elevation data.  

Multiple entry points, a search function, and a clear navigation structure provide an easy 

way to get from a global to a local view and vice versa. Moreover, we followed the idea of 

suggested interactivity [6], in the form of little preview videos and tooltips, to guide first-

time users through the visualization system. 

 

4.2. Usage Scenarios 

Over the course of the last two years, we evaluated and discussed our approach with the 

following target groups: Operators of a medium-sized bike-sharing network, city planners, 

public authorities, researchers in urban sociology, and the general public. Overall, we 

interviewed 15 participants in 13 single or group sessions. The insights we gained together 

with these people informed many design considerations and shaped the final 

implementation. The usage scenarios below are based on them and are meant to illustrate 

the potential of our interactive visualization tool. 

 

4.2.1. Usage Scenario – Commuting Patterns: By recording and aggregating station fill 

levels over a period of 17 months we get an accurate picture of the daily average utilization 

of each station in a network. The fill level analyzer, shown in Figure 1-a, with its multiple 

coordinated views is based on this data and provides a new approach to identify capacity 

bottlenecks and commuting behaviors in bike-sharing systems. The multi-series line chart 

is the core element and shows, for a selected city, the average fill levels (y-axis) during the 

day (x-axis). Each line represents a station. Due to the different numbers of docking spaces 

per station, the fill levels are normalized. This contrasts from the work from O'Brien et al., 

[7] where all station fill levels are aggregated to get a single line. In that case, during the 
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averaging process important information gets lost and it is impossible to expose critical 

stations that are mostly full or empty. In our proposed system, all stations are separated and 

the user can switch between different modes to explore, for example, fill levels only for 

weekends or weekdays. Additionally, there are two other perspectives: an elevation profile 

of all stations and an interactive map for providing the geographic context. 

Dynamic linking and brushing [8], an interactive visualization technique that connects 

multiple views, leads to a holistic understanding of the city dynamics. As shown in Figure 

1, the user can draw a line—a hypothetical profile—on top of the multi-series line chart and 

our algorithm automatically selects similar stations. At the end of the drawn line a slider is 

displayed and allows the user to specify how many lines she wants to select (default is 20% 

of the lines). The selected stations are not only highlighted in the line chart (brushing), but 

also in all other views (linking). Linking and brushing is a well-studied technique in 

visualization research [37] and many systems have successfully employed it in the past. Its 

biggest benefit is that the users can interactively and easily cast complex queries to the data. 

The query is casted in a direct manipulation manner [38], that is, the user can stay in her 

mental model without the need to leave her current train of thought and interaction mode. 

The highlighting is propagated to various other views where aspects related to the user’s 

selection visually pop out without the necessity to actively process them [39]. This approach 

allows the user to quickly analyze complex patterns that are distributed over multiple views. 

The supplemental video illustrates our linking and brushing approach. 

Besides bike-sharing operators, that can use the tool to analyze capacity bottlenecks, 

such as frequent outages, city planners and public authorities can use the visualization 

system also to identify and communicate urban commuting behaviors. For example, 

stations in the city center of London get full during the day and empty through the night, as 

shown in Figure 1-a. This phenomenon is observable in many cities worldwide as illustrated 

in Figure 3. Milan and New York City show very similar behaviors. People from the 

outskirts are commuting to downtown areas, such as Fifth Avenue in New York or Piazza 

Duomo in Milan, in the morning and return in the evening. Mexico City's pattern is a bit 

more faceted and shows multiple geographical hotspots. Although our two city planner 

interviewees have hypothesized a considerable separation of residential and commercial 

spaces in certain cities, our tool exposed visible evidence for this behavior. 

Barcelona and other Spanish cities show this characteristic morning commute curve too 

but in the afternoon it becomes vague. We can imagine that this effect might stem from the 

different working patterns in Spain with a longer lunch break and longer working hours in 

the evening [9]. This assumption could be further investigated by sociology researchers 

with the aid of our visualization system. 

Other cities, such as Marseille or Vienna, are instead characterized by a mixed-use 

development, without such a clear commuting pattern in filling levels (i.e., mostly balanced 

fill levels). 

 

4.2.2. Usage Scenario - Combining with Additional Data: Multiple guided brainstorming 

sessions with a bike-sharing operator revealed that elevation differences between stations 

are essential factors for the cost-efficient functioning of a system. Stations at higher 

altitudes tend to be empty more frequently because users are usually more downhill-

oriented. The bikes must be re-balanced manually by the operator. By combining the 

historical bike-sharing records with elevation profiles, the implemented visualization 

system also supports a closer investigation of this question. As part of the fill level analyzer, 

described in the previous usage scenario, we have integrated an elevation profile of all 

stations, which is also connected via linking and brushing to all other views. Instead, of a 

u-shaped commuting pattern such as in Figure 1-a, average filling levels in Vienna, for 

example, remain mostly constant throughout the day but show clear evidence of fewer 

available bikes at higher altitudes (see Figure 4-a). The maximum elevation difference 

between the highest and lowest station serves as one of our network characteristics and can 
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be also used to analyze elevation patterns on a global scale. While we were considering to 

show this information by color coding the stations (circles), visualization is always a careful 

tradeoff and showing too much quickly leads to cluttered interfaces. To keep the design 

straightforward and to the point, we thus decided to show elevation information of stations 

in a separate view and connect it via linking and brushing. 

Besides the elevation profiles, we further enhanced our database with hourly weather 

records for all cities. Weather has been found a substantial factor in bike sharing demand 

[10]. In addition to cross-correlation between the temperature and the network activity, 

which we compute for easy global comparisons, we also added an additional time series 

view showing this data visually. Vienna, for example, has a distinctive pattern and a 

particularly strong relationship between the network activity and the temperature, as shown 

in Figure 5. The two white cuts in April and August were caused by server issues and do 

not represent the actual network activity. Visualization is also good in quickly revealing 

such anomalies [11]. Analyzing the impact of weather conditions on bike-sharing can help 

to improve rebalancing operations and the planning of new systems in the future [12]. 

Generally, we opted for a modular design that can be easily extended with data from 

other sources, as well as with different views onto this data. Especially future work in urban 

sociology would benefit from an integration of additional context information, such as 

demographic developments (workplace density, gross domestic product etc). 

 

4.2.3. Usage Scenario - Multi-City Comparisons: Conceptually, our user interface 

follows Shneiderman`s venerable information-seeking mantra (“overview first, zoom and 

filter, details on demand”) [13]. In order to provide an overview, a shared global perspective 

on the collected data, we implemented multiple interactive visualizations of all networks, 

such as zoomable maps or a small multiples view (see Figure 2-a and 2-b). Due to the same 

scales and axes, small multiples are very efficient for giving a first quick overview and for 

comparison purposes [14]. The individual vector maps with bike-sharing stations as dots 

serve as indicators of the size, structure, and density of networks. 

To illustrate the global scale of our data, we implemented another multi-coordinated 

view dashboard that allows users to interactively explore bike-sharing systems globally 

(Figure 6). Several frequency charts (or strip plots), with thin, vertical lines representing 

individual networks, show the distribution of networks along a set of selected dimensions, 

such as, population, network activity, or the reachable stations (see Section 3 for more 

details). Similar to the fill level analyzer, users can draw lines on top of these charts to select 

certain ranges of interest. Again, leveraging the linking and brushing approach, the 

selection is highlighted on all other dimensions, as well as in the corresponding map. Vice 

versa, upon filtering a specific geographical region (lasso selection, see Figure 4-b), the 

received values are highlighted in the frequency chart. 

While operators of these systems have mostly a rather narrow and local view, our 

visualization enables them to explore, compare, and learn from other networks worldwide. 

Similarly, politicians and transportation authorities who are planning a new bike-sharing 

system can get interesting insights from equal-sized cities, such as the number of reachable 

stations in a 2 kilometer radius. 

 

4.2.4. Usage Scenario - General Public: By bringing together distributed, heterogeneous 

data on a single platform we also simplify the access for general public users. While this 

user group is often not interested in in-depth analysis, it can benefit from a lightweight 

interface that leverages this rich data source. Our implemented system includes various 

features that illustrate how typical tasks that appeal to the general public can be supported, 

for example, maps showing live station fill levels or a bike-sharing route planner for all our 

468 networks, shown in Figure 1-b and Figure 1-c respectively. 
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Figure 3. Station Fill Levels Visualized as Multi-Series Line Charts Serve as 
Indicators of Commuting Behaviors Worldwide. Small Thumbnails in the 
Middle Column of each View Show How Patterns Differ during the Week 

from those on the Weekend. Users can Click on one of the Thumbnails to 
show it in the Main View Enlarged. Stations can be Selected either in the 

Line Chart or in the Map View and are Highlighted Respectively 
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(a) Fill Level Analyzer Shows Mostly Balanced Fill 
Levels in Vienna but Provides Evidence of Fewer 
Available Bikes at Higher Altitudes 

(b) Lasso Selection Tool can be 
used to Filter Stations based on 
a Geographical Region

Figure 4. Analyzing Station Fill Levels of Vienna’s Bike-Sharing Network 

 

Figure 5. Time Series Showing the Network Activity (Gray Area) and the 
Temperature (Line) in Vienna 

Within the route planner users can enter trip start- and endpoints and the system 

automatically finds the nearest stations and the fastest route. Additional tooltips in the 

interactive map show the current fill level and a historical profile for each station, which 

we computed by averaging across the 17 months of data that we recorded. This information 

can be used to roughly predict how the availability might look like at a certain point in time, 

similar to Google's `popular times' feature [15]. While similar planning tools exist for many 

systems [16,17], our data allows a unified approach across them.  

In order to make the tool usable for a broad audience, we cannot have a steep learning 

curve as is the case for many expert visualization and data analysis tools. Hence, it is 

important that users are immediately aware of the benefits to get interested. Different design 

considerations and a much stronger focus on usability has been taken into account. We 

sought to consistently use easy to understand visual encodings, specifically as the 

visualization literacy of the general public is known to be low [18]. The feedback received 

in interactions with six persons of this user group has shown the added value, especially for 

those traveling or moving to new cities.  
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4.3. Implementation 

Our system is implemented as a web-based tool that runs in every modern web browser 

and that adapts flexible to different desktop monitors. While we have used Python 

extensively for data-preprocessing, the actual web-interface is primarily based on 

JavaScript. We use the library d3.js 1  for visualizations, and leaflet.js 2  for integrating 

interactive maps. The fill level analyzer with its interactive selection tool is also purely 

based on JavaScript and d3.js. The collected and aggregated data is stored in a MySQL 

database and partly in small CSV files that can be loaded asynchronously as needed. 

 

 

Figure 6. Frequency Charts Linked with a Map View Allow Users to 
Interactively Explore and Compare Network Characteristics 

5. Conclusions and Future Work 

In this work we discuss a data-driven and visual approach to understanding and 

leveraging smart city data. Through our iterative design process, we found evidence that 

such an approach can benefit different target groups. The fill level analyzer with its multi-

coordinated views, for instance, provides a new way to explore and communicate 

commuting behaviors in 45 countries. The combination with other data sources can help, 

for instance, urban sociology researchers to analyze effects of residential segregation. 

Elevation profiles support bike-sharing operators in identifying bottlenecks with stations at 

higher altitudes. An integrated route planner and live station fill levels offer a benefit for 

general public users. 

While our system is primarily built around global bike-sharing data we believe that the 

proposed visual approach is relevant for other smart city sensors too. Observed more 

closely, we use the data not only to analyze cycling behavior or to build a route planner but 

also as a way to understand high-level city dynamics more generally. The concept of using 

sensors for monitoring tasks for which they were not initially designed is called 

                                                 
1 https://d3js.org 
2 http://leafletjs.com 

https://d3js.org/
http://leafletjs.com/
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opportunistic sensing (or citizen sensing) [35]. Massive amounts of data, produced by car 

sharing services, taxis, public transport systems, smart meters, or other sensors provide 

abstractly similar challenges and opportunities. By recording them over a long time period 

and by making them accessible and visually explorable it could open up new possibilities 

in understanding and improving urban environments. 

We will continue to gather live station fill levels in a 15 min interval and to execute the 

preprocessing workflow regularly. Furthermore, it is our intention to continuously expand 

the platform and to integrate additional bike-sharing networks in the future.  

We recorded not only the temperature but also weather conditions, humidity and wind 

speed for all cities. Eventually, however we decided to include only the temperature for the 

beginning. Thus, several questions remain unanswered such as the influence of 

precipitation or extreme weather conditions on the network activity.  The weather records 

combined with bike-sharing data or other datasets open broad possibilities for detailed 

analyses that we plan to address in future work. 

So far, we have only scratched the surface and there are many more usage scenarios that 

could be explored in this context. But also the ones that we have identified would benefit 

from being complemented, for instance, by further design studies and in-depth 

collaboration with specific user groups [36]. Our work of gathering and making the data 

available now provide the first steps towards such future endeavors. Beyond that, we also 

hope that our work will inspire researchers and designers of other urban data solutions. 
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