KONA Powder and Particle Journal
Online ISSN : 2187-5537
Print ISSN : 0288-4534
ISSN-L : 0288-4534
Review Papers
Versatile Fabrication of Complex Shaped Metal Oxide Nano-Microstructures and Their Interconnected Networks for Multifunctional Applications
Yogendra Kumar MishraSören KapsArnim SchuchardtIngo PaulowiczXin JinDawit GedamuSebastian WilleOleg LupanRainer Adelung
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2014 Volume 31 Pages 92-110

Details
Abstract

Metal oxide nano-microstructures are applied in photocatalytic surfaces, sensors or biomedical engineering, proving the versatile utilization of nanotechnology. However, more complex or interconnected nano-microstructures are still seldomly met in practical applications, although they are of higher interest, due to enhanced structural, electronic and piezoelectric properties, as well as several complex biomedical effects, like antiviral characteristics. Here we attempt to present an overview of the novel, facile and cost-efficient flame transport synthesis (FTS) which allows controlled growth of different nano-microstructures and their interconnected networks in a scalable process. Various morphologies of nano-microstructures synthesized by FTS and its variants are demonstrated. These nano-microstructures have shown potential applications in different fields and the most relevant are reviewed here. Fabrication, growth mechanisms and properties of such large and highly porous three-dimensional (3D) interconnected networks of metal oxides (ZnO, SnO2, Fe2O3) nano-microstructures including carbon based aerographite material using FTS approaches are discussed along with their potential applications.

Content from these authors

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top