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STABLE IDENTIFICATION OF LINEAR AUTOREGRESSIVE MODEL
WITH EXOGENOUS VARIABLES ON THE BASIS
OF THE GENERALIZED LEAST ABSOLUTE DEVIATION METHOD
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Least Absolute Deviations (LAD) method is a method alternative to the Ordinary
Least Squares OLS method. It allows to obtain robust errors in case of violation of OLS
assumptions. We present two types of LAD: Weighted LAD method and Generalized LAD
method. The established interrelation of methods made it possible to reduce the problem
of determining the GLAD estimates to an iterative procedure with WLAD estimates.
The latter is calculated by solving the corresponding linear programming problem. The
sufficient condition imposed on the loss function is found to ensure the stability of the
GLAD estimators of the autoregressive models coefficients under emission conditions. It
ensures the stability of GLAD-estimates of autoregressive models in terms of outliers.
Special features of the GLAD method application for the construction of the regression
equation and autoregressive equation without exogenous variables are considered early.
This paper is devoted to extension of the previously discussed methods to the problem of
estimating the parameters of autoregressive models with exogenous variables.

Keywords: algorithm; autoregressive model; linear programming; parameter

identification.

Introduction

One of the important problems in measurement theory is the identification of linear
autoregressive models [1-4]

m n
Y = E CLjyt_j+ E bjl’tj‘i‘Et, t= 1,2,...7T, (1)
j=1 j=1
here y1,vs,...,y, are the values of the state variable, xy;, xo, ..., z, are the values of
controls at time points t = 1,2,...,T, €, €2, ..., € are random errors, a;,as,as. .., 0y,
and by, by, bs ..., b, are unknown coefficients.

We consider the evaluation of the coefficients of the linear autoregressive equation
(1) with exogenous variables. Ordinary Least Squares (OLS) is the parametric method
in common used for estimation of the regression equation coefficients. We need some
strict assumptions to use OLS. They include independence and normal distribution of
errors and determinacy of explanatory variables [5]. Even minor violations of stated
assumptions dramatically lower the efficiency of estimators. Let us note the instability
of OLS estimation process in case of presence of large measurements errors. In this case,
estimated coefficients become inconsistent. Finding estimates of autoregressive equation
becomes substantially complicated due to the poor conditionality of the equations system
representing necessary conditions for minimization of squared deviations sum.

Least Absolute Deviations (LAD) method is a method alternative to OLS. It allows
to obtain robust errors in case of violation of OLS assumptions [5].
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We present two types of LAD: Weighted LAD method |6] and Generalized LAD method
[9]. The interrelation of methods established in [10] made it possible to reduce the problem
of determining the GLAD estimates to an iterative procedure with WLAD estimates.
The latter is calculated by solving the corresponding linear programming problem. The
sufficient condition [9] imposed on the loss function is found to ensure the stability of
the GLAD estimators of the autoregressive models coefficients under emission conditions.
It ensures the stability of GLAD estimates of autoregressive models in terms of outliers.
Special features of the GLAD method application for the construction of the regression
equation are considered in [10]. Special features of the use of GLAD for constructing the
autoregressive equation without exogenous variables are considered in [9]. This paper is
devoted to extension of the previously discussed methods to the problem of estimating the
parameters of autoregressive models with exogenous variables.

1. The Relationship between WLAD and GLAD Estimates
One can get the WLAD estimations of coefficients by solving the problem

T m n
*x % % 1% £y .
(CL17 Aoy veny Qs b17 b27 e bn) —arg( IHIH)ERm E e |y — ajYi—; b]xtj : (2)
a1,02,...,0m , Z 2 :
(b1,ba,....bn ER™ =1 j=1 j=1

where p; > 0,t = 1,2,...,T are predetermined coefficients. This problem represents
the problem of convex piecewise linear optimization, and the introduction of additional
variables reduces it to the problem of linear programming

T m "
min Zptut U S Y~ ijl a;jYs—j — Zj:l bjxy < uy, ' (3)
(‘El];:agrwabmgegmy —1 Ut 2 07 t = ]_7 27 e 7T

1,02,...,n )€ n -

(u1,u2,...,ur)ERT

This problem has a canonical form with n+m+T+1 variables and 3n inequality constraints

including the conditions for the non-negativity of the variables u;, j = 1,2,...,T. The

main problem with the use of WLAD method is the absence of general formal rules for

choosing weight coefficients. Consequently, this approach requires additional research.
The GLAD estimates can be obtained from the solution of the problem

* * *
(ar*, ao®, ..., an™, b, b*, ..., b)) =
T m n (4)
= arg min 3T\ ye— 20 ay—j — 2 by |,
(a1,a2,....,am)ER™ —1 =1 j=1

(b1,b2,....bn )ER™

where p(x) is a convex upward monotonically increasing twice continuously differentiable
function such that p(0) = 0.

Theorem 1. All local minima of the GLAD estimation problem for the coefficients of the
autoregressive equation (1) belong to the set

(1,020, 0, 509,5,%9, 5,09 ;

U= Yo = D aiyi—j + > bz,
g=1 j=1
tek:{kl,kg,...,k?m+ni1§k1<k2<...<km+n§T}
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Proof. The set U contains the solutions of all possible joint systems of m + n linearly

independent equations
Y = Zajyt—j + Z bjzy, t €k
j=1 j=1

with m + n unknowns a1, as, a3 ..., Gy, b1, b9, 03...,0,.

If the solution (ai,as,a3...,am,b1,b0,b3...,b,) & U then there exists an
e-neighbourhood for which the loss function is continuous and convex upwards.
Consequently, such a solution can not be a local minimum. This implies the assertion
of the theorem.

O

Obviously, the number of systems is equal C:*". Thus, the solution of problem (3) can
be reduced to choosing the best of C;:*™ solutions of linear algebraic equations systems.

This approach is applicable for m < 3 . To compute GLAD estimates for higher order
dimension problems the interrelation between WLAD and GLAD estimates have to be
used from

Theorem 2. Let U be the set of local extrema of problem (4) then:
(1) for each collection of weights {p:}},

e U; (5)

n m n
arg min E Dt |Yr — a;Ys—; — E by
JeR™ 2 Ai=i T 2 Vit

J=1 J=1

(al y@25--,Gm
(by,bg,....bn)ER™ =1

(2) for all <a1(k), as® o a,® p® M bn(k)> € U there is such a collection
of weights {p,}1—, that

* * *
(al*,ag*,ag*...,am*, bl ,bg ,...,bn ) c
n m n (6)
€ arg min DDy = X2 Ay — D bjte).
(a1,a2,...,am)ER™ =7 =1 j=1

(b1,b2,...,bn)ER™

Proof. The proof of the first part of the theorem essentially repeats the proof of Theorem 1.
The validity of the second part of the theorem follows from the fact that the weights of
the active part of the constraints can be considered as non-zero, and the weights of the
inactive part are equal to zero. In this case the minimal value of the loss function is equal
to zero and it is achieved by solving the chosen system of equations. This implies the
assertion of the theorem.
(I
Theorems 1 and 2 give a way to determine the weight coefficients for the linear
programming problem (3) and thus allow the problem (4) to be reduced to solving the
sequence of linear programming problems (3).

2. Algorithm for Computing GLAD Estimates

The primal solution of problem (4) is based on the usage of theorem 1 and involves
finding all node points and choosing one of them as a solution that ensures the minimum
of the objective function.
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The brute force algorithm requires the solution of C:'™ linear equations systems

of order m + n. For large values of n and m this leads to a significant computational
complexity. An alternative approach is based on the reduction of this problem to the
sequence linear programming problems (3). Consider possible algorithms based on this
approach.

Algorithm GLAD estimator

Input:

number of measures T’

values {y;}1, of the endogenous variable;

values {{x;}/_,}}_, of exogenous variables;
function p(x).

Output:

estimation of coefficients of autoregressive equation

* * * * * * *
(a17a27a3"'7am7 b17b27"‘7bn)‘

Step 1. For allt=1,2,..., Tdo p; =1; k:=0;

(1™, 0P, a5® .., a,,®)
(bl““ b2<’“ PRCNC
(01, 1), 0y ® )
| “ue = 3y = by <
= arg( mm)eRm > prug tS U 2 Al £ i t
(bi:b;:;:::b:)ER" t=1 Ut Z 0, t - 1, 2, e ,T

(u1,u2,...,ut) ERT
Step 2. For all t = 1727"'7T do k:=k+1;

(a1 3y ®)

(U1 ) , U3 ),...,ut(k))
{ T —up < Yy — Z ajy—j — > bixy < wy,
-1 j=1

=1 utEO,tzl,Z,...,T

= arg mln
(a1,a2,...,.am)ER™
(b1,b2,,...,bn)ER™
(u1,u2,,...,us) ERT

Step 3. If

al(k)7 az(k)’ a3(k) .. ’am(k) al(k_l)’ G/Q(k_l), a3(k_1) - ’am(k_l)
by ®) ) R ) by k=D py (b= g (=l (R

then go to Step 2.
Step 4. Stop. Target values are

al(k), ag(k), ag(k) o 7am(k)
bl(k), b2(k)’ bg(k) o bn(k)

The performance justification of this algorithm leads us to the following theorem:.
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Theorem 3. If the loss function p(x) is convex upward, monotone increasing, continuously
differentiable on the positive semi-axis, and satisfies the condition p(0) = M < oo then

the sequence
' ® a® ay® g ®)
bl(k), b2(k)’ bg(k) o 7bn(k)
constructed by the GLAD estimation algorithm converges to the global extremum of problem

(4)-

Proof. Tt follows from the requirements imposed on the function p(x) that at any point u*
an approximation

y(“(k>)(u) = p(u®) — o' (u®) - u® 1 g (u®)) .y (7)

is a majorant, i.e.
(Vu 7 u) (p(u) < v,m (),  plur) = v(ug). (8)
Therefore, in accordance with the algorithm

):

Zp ( Ye
t=1

~S Wy =3 bWy,
j=1 j=1

< Z a] My J Z b xt] )
- Z Pt Z aj yt —j Z bj(k)xtj + >
— Jj=1
+Dpe Z a;My;-; Z bj(k)xtj
n < Z a; By = bWy | -
i—1
> ) +
=1 Z ay yt —j - bj(k)xtj
=1

t=1

n p(@/t_

n
+ min E [
(a1,a2,a3...,am)ER™

Yt — Z a;Yt—j — Z bjxtj ) =
j=1 J=1

).

2 a; My ; — 2 b; My
= ]:

n
t=1 k)
Z a] Wy —j = 20 by
izl
m n
2 § k+1 2 k+1 _
+ Ds - ) . b]( ) xtj —
t=1 =1 j=1
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m

yr — Zaj(k-‘rl Yr_j Zb k+1)l‘ "

i=1

— - (y(“(k>) )_
t=1

S (oS- S0 )

t=1 j=1

j=1
The first equality and the inequality following it are obvious. The second equation is a
consequence of changing the notation of the variables in step 1. The third equation is the
result of the choice of the weight coefficients in step 2 and equality (7). The last inequality
is a consequence of relations (8). Therefore

el )-

m

> a4y, - 2”: b; "y

j=1
-3 ( SWCUEE WEIE
t=1 j=1 J=1
=D ( ZED DTSR D ) |
t=1 j=1 j=1

moreover, equality is attained only if for allt =1,2,...n and for all k = 1,2,...,m. That
is why the sequence

{ZP ( Yt — Zaj(k)yt—j - ij(k)l‘tj ) }

t=1 Jj=1 J=1 k=0,1,...

is monotonically decreasing and bounded below by zero, hence it has a unique limit point.
The existence of limit point of the sequence

®) o ®) g (k) (k)
a;>,az2>, as sy Gm
( b8 b, b0 () ) , k=12,
follows from continuity and monotonicity of functions p(x) . The limit point
al*, &2*, ag*, c. ,am*
b*,bo", b3, ... b,
built by the algorithm is the global minimum because for any
ay, 2,03, . ..,0n
b17b27b37 <. '7bn
we have the following sequence of statements
T m n
Yool |y =2 ajyry — Dbyl | =
-1 j=1 j=1
~
T m n . T .
=l 7j=1 7=1 t=1
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m n
/ * *
P'lye = D ai*ye—j — > b | x
Jj=1 J=1

M=
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W
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—

m n
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=1 j=1

12 X

m n
* *
Ye — 2o 0"y — D bty
=1 =1

Ye — f: AjYi—j — i bjy
j=1 j=1
T m n T m n
< (Z ye— > @y — > by <D |w— Y ajp— Y by
Jj=1 Jj=1 t=1 Jj=1 j=1
T m n
é(Zp(yt—Zajyt_j—ijxtj)gZ,;( ))
j=1 t=1
O

j=1

The advantage of the proposed algorithm in front of the bushing is a sufficiently high
rate of convergence with efficient use of linear programming methods. Indeed, the linear
programming problem in step 2 for iteration k& differs from the corresponding problem at
step £ — 1 only by the coefficients of the objective function which allows us to use the
optimal basic solution of the previous iteration as the initial basic solution at the current
iteration.

A feature of finding the high-order autoregression equation is the high sensitivity of
the algorithm to rounding errors. One may eliminate this problem by using the unerring
execution of basic arithmetic operations over the field of rational numbers [7] and the
application of parallelization [8].

m >;$

ye— Y ayg— > by
j=1

=1

Conclusion

The relationship between the generalized and weighted method of the smallest modules
was established for the problems of autoregressive analysis with exogenous variables. This
relationship makes it possible to reduce the problem of determining the GLAD estimates
to the iterative procedure with WLAD estimates. The latter is calculated by solving the
corresponding linear programming problem.

The sufficient condition imposed on the loss function is found to ensure the stability of
the GLAD estimators of the autoregressive models coefficients under emission conditions.
It ensures the stability of GLAD estimates of autoregressive models in terms of outliers.
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YCTOMYUBASA NIEHTUOUKAIINA JIMHENHBIX
ABTOPEI'PECCHUOHHBIX MOJEJIEI C 9K30TI'EHHBIMUI
ITEPEMEHHBIMU HA OCHOBE OBOBIIIEHHOI'O METO/JA
HAUMEHBIIINX MOIYJIEI

A.B. Ilantoxoe, 51.A. Me3saa
FOxHO-Y panabcKuil rocy1apcTBeHHbIN YHUBEPCUTET, I. YesigOuncK,
Poccuiickag ®enepamust

Meron Hanmenbiux Momayseit (MHM) sipjistercst aabrepHATHBON MeTONY HAMMEHBIINX
kBagparos (MHK). MHM nosBosisier mo/1ydnuTh HAJEXKHbIE OIEHKH [IPU HAPYIIEHUU [PEI-
nosoxkerniit MHK. B paore pacmorpenst asa tuna MHM: s3permentbiii meroq (BMHM) u
obobmenusiit (OMHM). YcranoBrenHas B3aNMOCBA3b METOIOB MO3BOJMIA CBECTH IIPOGTE-
My omperenennss OMHM-onenok k urepanuonnoii mporeaype ¢ BMHM-omenkamu, KoTopbie
BBIMUCJISIOTCS IIyTEM PEIeHNs COOTBETCTBYOMIEN 3a4a4u JIMHEHHOTO MPOrPAMMHUPOBAHUSA.
Haiineno nocrarounoe yciosue, HasaraeMoe Ha DYHKITUIO IOTEPD, 0becriednBaonee yeToi-
quocTb OMHM-o1neHOK K03hDUIEHTOB aBTOPErpecCHOHHBIX MOjieeil. 1o obecrednBaer
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craburbrocTs OMHM-0IIEHOK aBTOPErpecCHOHHBIX MOJIesel ipy Hajuauu BIGpocoB. Oco-
6ennocTr u3BecTHbIX criocobos npumenenuss OMHM g upenrudukanuun ypaBHeHus pe-
TPECCUM W yPaBHEHHUsI aBTOPerpeccuu 0e3 dK30TeHHBIX MepeMeHHbIX 0000IIEeHbI 10 Crocoda
UAeHTHOUKAINN MOIEIEHl aBTOPErPECcCHi C SK30MeHHBIMHU TTEDEMEHHBIMUA.

Karouesvie caosa: arzopumm; modeab a8mopezpeccuu; AUHEUHoe Npo2pammuposarue;

napamempu1ecKan u@enmugﬁumzuwz.
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