skip to main content
research-article

PRESS: a novel framework of trajectory compression in road networks

Authors Info & Claims
Published:01 May 2014Publication History
Skip Abstract Section

Abstract

Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (<u>P</u>aralleled <u>R</u>oad-Network-Based Trajectory Compr<u>ess</u>ion), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.

References

  1. Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. CACM, 18(6):333--340, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Richard Bellman. On the approximation of curves by line segments using dynamic programming. CACM, 4(6):284, 1961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle tracking data. In VLDB'05, pages 853--864, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hu Cao and Ouri Wolfson. Nonmaterialized motion information in transport networks. In ICDT'05, pages 173--188, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica, 10(2):112--122, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Morgan Kaufmann, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. John Edward Hershberger and Jack Snoeyink. Speeding up the Douglas-Peucker line-simplification algorithm. University of British Columbia, Department of Computer Science, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David A. Huffman. A method for the construction of minimum-redundancy codes. IRE, 40(9):1098--1101, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  9. Donald E. Kauth. The art of computer programming: Volume 3/Sorting and searching. Addison-Wesley, 1973.Google ScholarGoogle Scholar
  10. Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. Map-matched trajectory compression. JSS, 86(6):1566--1579, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for segmenting time series. In ICDM'01, pages 289--296, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eamonn J. Keogh and Michael J. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In KDD'98, pages 239--243, 1998.Google ScholarGoogle Scholar
  13. Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-matching for low-sampling-rate gps trajectories. In GIS'09, pages 352--361, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. Finding time period-based most frequent path in big trajectory data. In SIGMOD'13, pages 713--724, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Robert B. McMaster. A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13(2):103--116, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  16. Nirvana Meratnia and A. Rolf. Spatiotemporal compression techniques for moving point objects. In EDBT'04, pages 765--782, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. Algorithms for compressing gps trajectory data: an empirical evaluation. In GIS'10, pages 402--405, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jonathan Muckell, Paul W. Olsen Jr, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica, pages 1--26, Published Online: July, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Paul Newson and John Krumm. Hidden markov map matching through noise and sparseness. In GIS'09, pages 336--343, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Michalis Potamias, Kostas Patroumpas, and Timos Sellis. Sampling trajectory streams with spatiotemporal criteria. In SSDBM'06, pages 275--284, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Renchu Song, Wei Lu, Weiwei Sun, Yan Huang, and Chunan Chen. Quick map matching using multi-core cpus. In GIS'12, pages 605--608, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. Press: A novel framework of trajectory compression in road networks (http://arxiv.org/abs/1402.1546). Technical report, 2014.Google ScholarGoogle Scholar
  23. Goce Trajcevski, Hu Cao, Peter Scheuermanny, Ouri Wolfsonz, and Dennis Vaccaro. On-line data reduction and the quality of history in moving objects databases. In DEWMA'06, pages 19--26, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jeffrey S. Vitter. Random sampling with a reservoir. TOMS, 11(1):37--57, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Raymond Chi-Wing Wong and Ada Wai-Chee Fu. Mining top-k frequent itemsets from data streams. Data Mining and Knowledge Discovery, 13(2):193--217, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yu Zheng and Xiaofang Zhou. Computing with spatial trajectories. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. PRESS: a novel framework of trajectory compression in road networks
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Proceedings of the VLDB Endowment
        Proceedings of the VLDB Endowment  Volume 7, Issue 9
        May 2014
        124 pages
        ISSN:2150-8097
        Issue’s Table of Contents

        Publisher

        VLDB Endowment

        Publication History

        • Published: 1 May 2014
        Published in pvldb Volume 7, Issue 9

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader