skip to main content
research-article

When engagement meets similarity: efficient (k,r)-core computation on social networks

Authors Info & Claims
Published:01 June 2017Publication History
Skip Abstract Section

Abstract

In this paper, we investigate the problem of (k,r)-core which intends to find cohesive subgraphs on social networks considering both user engagement and similarity perspectives. In particular, we adopt the popular concept of k-core to guarantee the engagement of the users (vertices) in a group (subgraph) where each vertex in a (k,r)-core connects to at least k other vertices. Meanwhile, we consider the pairwise similarity among users based on their attributes. Efficient algorithms are proposed to enumerate all maximal (k,r)-cores and find the maximum (k,r)-core, where both problems are shown to be NP-hard. Effective pruning techniques substantially reduce the search space of two algorithms. A novel (k,k')-core based (k,r)-core size upper bound enhances performance of the maximum (k,r)-core computation. We also devise effective search orders for two mining algorithms where search priorities for vertices are different. Comprehensive experiments on real-life data demonstrate that the maximal/maximum (k,r)-cores enable us to find interesting cohesive subgraphs, and performance of two mining algorithms is effectively improved by proposed techniques.

References

  1. How does facebook suggest groups for me to join? https://www.facebook.com/help/382485908586472?helpref=uf_permalink. Accessed: 14 Mar. 2017.Google ScholarGoogle Scholar
  2. V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049, 2003.Google ScholarGoogle Scholar
  3. K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in social networks: The anchored k-core problem. SIAM J. Discrete Math., 29(3):1452--1475, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swaminathan. Mining email social networks. In MSR, pages 137--143, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM, 16(9):575--576, 1973. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in sparse graphs. Algorithmica, 66(1):173--186, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. K. Chen and C. Lei. Network game design: hints and implications of player interaction. In NETGAMES, page 17, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal clique enumeration with limited memory. In KDD, pages 1240--1248, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world graphs. In SEA, pages 364--375, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community search over large spatial graphs. PVLDB, 10(6):709--720, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for large attributed graphs. PVLDB, 9(12):1233--1244, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Fang, H. Zhang, Y. Ye, and X. Li. Detecting hot topics from twitter: A multiview approach. J. Information Science, 40(5):578--593, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. JACM, 23(1):43--49, 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. K. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and A. Wallace. Finding overlapping communities in social networks. In SocialCom/PASSAT, pages 104--113, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Hristova, M. Musolesi, and C. Mascolo. Keep your friends close and your facebook friends closer: A multiplex network approach to the analysis of offline and online social ties. In ICWSM, 2014.Google ScholarGoogle Scholar
  17. X. Huang, W. Lu, and L. V. S. Lakshmanan. Truss decomposition of probabilistic graphs: Semantics and algorithms. In SIGMOD, pages 77--90, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. J. P. III, S. Moreno, T. L. Fond, J. Neville, and B. Gallagher. Attributed graph models: modeling network structure with correlated attributes. In WWW, pages 831--842, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. Identification of influential spreaders in complex networks. Nature physics, 6(11):888--893, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Kivelä and e. Arenas. Multilayer networks. Journal of Complex Networks, 2(3):203--271, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. Lee, L. V. S. Lakshmanan, and E. E. Milios. CAST: A context-aware story-teller for streaming social content. In CIKM, pages 789--798, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling engagement dynamics in social graphs. In CIKM, pages 469--478, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Nanopoulos, H. Gabriel, and M. Spiliopoulou. Spectral clustering in social-tagging systems. In WISE, pages 87--100, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269--287, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  25. P. Singla and M. Richardson. Yes, there is a correlation - from social networks to personal behavior on the web. In WWW, pages 655--664, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social contagion. PNAS, 109(16):5962--5966, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Wang, J. Cheng, and A. W. Fu. Redundancy-aware maximal cliques. In KDD, pages 122--130, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core graph decomposition at web scale. In ICDE, pages 133--144, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Wu, A. D. Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins. Arrival and departure dynamics in social networks. In WSDM, pages 233--242, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Wu, R. Jin, X. Zhu, and X. Zhang. Finding dense and connected subgraphs in dual networks. In ICDE, pages 915--926, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  31. Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In SIGMOD, pages 505--516, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Yang, J. J. McAuley, and J. Leskovec. Community detection in networks with node attributes. In ICDM, pages 1151--1156, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  33. F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB, 10(6):649--660, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social network engagement: The collapsed k-core problem. In AAAI, pages 245--251, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Q. Zhu, H. Hu, J. Xu, and W. Lee. Geo-social group queries with minimum acquaintance constraint. CoRR, abs/1406.7367, 2014.Google ScholarGoogle Scholar

Index Terms

  1. When engagement meets similarity: efficient (k,r)-core computation on social networks
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 10, Issue 10
      June 2017
      180 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      • Published: 1 June 2017
      Published in pvldb Volume 10, Issue 10

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader