skip to main content
research-article

Effective and efficient dynamic graph coloring

Published:01 November 2017Publication History
Skip Abstract Section

Abstract

Graph coloring is a fundamental graph problem that is widely applied in a variety of applications. The aim of graph coloring is to minimize the number of colors used to color the vertices in a graph such that no two incident vertices have the same color. Existing solutions for graph coloring mainly focus on computing a good coloring for a static graph. However, since many real-world graphs are highly dynamic, in this paper, we aim to incrementally maintain the graph coloring when the graph is dynamically updated. We target on two goals: high effectiveness and high efficiency. To achieve high effectiveness, we maintain the graph coloring in a way such that the coloring result is consistent with one of the best static graph coloring algorithms for large graphs. To achieve high efficiency, we investigate efficient incremental algorithms to update the graph coloring by exploring a small number of vertices. We design a color-propagation based algorithm which only explores the vertices within the 2-hop neighbors of the update-related and color-changed vertices. We then propose a novel color index to maintain some summary color information and, thus, bound the explored vertices within the neighbors of these vertices. Moreover, we derive some effective pruning rules to further reduce the number of propagated vertices. The experimental results demonstrate the high effectiveness and efficiency of our approach.

References

  1. A. Aboulnaga, J. Xiang, and C. Guo. Scalable maximum clique computation using mapreduce. In Proceedings of ICDE, pages 74--85, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Alberts, G. Cattaneo, and G. F. Italiano. An empirical study of dynamic graph algorithms. Journal of Experimental Algorithmics (JEA), 2:5, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and C. Shahabi. Real-time multi-criteria social graph partitioning: A game theoretic approach. In Proceedings of SIGMOD, pages 1617--1628, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph coloring. European Journal of Operational Research, 151(2):379--388, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in telecommunications. In Handbook of Optimization in Telecommunications, pages 865--890. Springer, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. Barnier and P. Brisset. Graph coloring for air traffic flow management. Annals of operations research, 130(1):163--178, 2004.Google ScholarGoogle Scholar
  7. I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research, 35(3):960--975, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. É. Bonnet, F. Foucaud, E. J. Kim, and F. Sikora. Complexity of grundy coloring and its variants. In International Computing and Combinatorics Conference, pages 109--120, 2015.Google ScholarGoogle Scholar
  9. P. Borowiecki and E. Sidorowicz. Dynamic coloring of graphs. Fundamenta Informaticae, 114(2):105--128, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online algorithms with advice: A survey. ACM Computing Surveys (CSUR), 50(2):19, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251--256, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Burjons, J. Hromkovič, X. Muñoz, and W. Unger. Online graph coloring with advice and randomized adversary. In International Conference on Current Trends in Theory and Practice of Informatics, pages 229--240, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. I. Caragiannis, A. V. Fishkin, C. Kaklamanis, and E. Papaioannou. A tight bound for online colouring of disk graphs. Theoretical Computer Science, 384(2-3):152--160, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Carroll, G. Heiser, et al. An analysis of power consumption in a smartphone. In USENIX annual technical conference, pages 21--21, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Chiarandini, T. Stützle, et al. An application of iterated local search to graph coloring problem. In Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pages 112--125, 2002.Google ScholarGoogle Scholar
  16. C. A. Christen and S. M. Selkow. Some perfect coloring properties of graphs. Journal of Combinatorial Theory, Series B, 27(1):49--59, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. Costa and A. Hertz. Ants can colour graphs. Journal of the operational research society, 48(3):295--305, 1997.Google ScholarGoogle Scholar
  18. J. C. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. Cliques, coloring, and satisfiability: second DIMACS implementation challenge, 26:245--284, 1996.Google ScholarGoogle Scholar
  19. C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In Algorithms and theory of computation handbook, pages 9--28, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Dorne and J.-K. Hao. A new genetic local search algorithm for graph coloring. In International Conference on Parallel Problem Solving from Nature, pages 745--754, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. G. Downey and C. McCartin. Online promise problems with online width metrics. Journal of Computer and System Sciences, 73(1):57--72, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. A. Dowsland and J. M. Thompson. An improved ant colony optimisation heuristic for graph colouring. Discrete Applied Mathematics, 156(3):313--324, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Dutot, F. Guinand, D. Olivier, and Y. Pigné. On the decentralized dynamic graph coloring problem. In Workshop of COSSOM, 2007.Google ScholarGoogle Scholar
  24. W. Erben. A grouping genetic algorithm for graph colouring and exam timetabling. In International Conference on the Practice and Theory of Automated Timetabling, pages 132--156, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. Fan, X. Wang, and Y. Wu. Querying big graphs within bounded resources. In Proceedings of SIGMOD, pages 301--312, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of combinatorial optimization, 3(4):379--397, 1999.Google ScholarGoogle Scholar
  27. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. Colpack: Software for graph coloring and related problems in scientific computing. ACM Transactions on Mathematical Software, 40(1):1, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph theory, 12(2):217--227, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. M. Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms, 23(2):265--280, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proceedings of SODA, pages 211--216, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Havet and L. Sampaio. On the grundy number of a graph. In International Symposium on Parameterized and Exact Computation, pages 170--179, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. M. Hedetniemi, S. T. Hedetniemi, and T. Beyer. A linear algorithm for the grundy (coloring) number of a tree. Congr. Numer, 36:351--363, 1982.Google ScholarGoogle Scholar
  34. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing, 39(4):345--351, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Hertz, M. Plumettaz, and N. Zufferey. Variable space search for graph coloring. Discrete Applied Mathematics, 156(13):2551--2560, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community in large and dynamic graphs. In Proceedings of SIGMOD, pages 1311--1322, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Operations research, 39(3):378--406, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. A. Kierstead, D. A. Smith, and W. T. Trotter. First-fit coloring on interval graphs has performance ratio at least 5. European Journal of Combinatorics, 51:236--254, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. Congressus Numerantium, 33(143--153):98, 1981.Google ScholarGoogle Scholar
  40. S. M. Korman. The graph-colouring problem. Combinatorial optimization, pages 211--235, 1979.Google ScholarGoogle Scholar
  41. M. Laguna and R. Martí. A grasp for coloring sparse graphs. Computational optimization and applications, 19(2):165--178, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. Lewis. A general-purpose hill-climbing method for order independent minimum grouping problems: A case study in graph colouring and bin packing. Computers & Operations Research, 36(7):2295--2310, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. R. Lewis, J. Thompson, C. Mumford, and J. Gillard. A wide-ranging computational comparison of high-performance graph colouring algorithms. Computers & Operations Research, 39(9):1933--1950, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Lovász, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with sublinear performance ratio. Discrete Mathematics, 75(1-3):319--325, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Lü and J.-K. Hao. A memetic algorithm for graph coloring. European Journal of Operational Research, 203(1):241--250, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  46. E. Malaguti, M. Monaci, and P. Toth. A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing, 20(2):302--316, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Manweiler and R. Roy Choudhury. Avoiding the rush hours: Wifi energy management via traffic isolation. In Proceedings of MobiSys, pages 253--266, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. Journal of the ACM, 30(3):417--427, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. F. Moradi, T. Olovsson, and P. Tsigas. A local seed selection algorithm for overlapping community detection. In Proceedings of ASONAM, pages 1--8, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  50. C. Morgenstern. Distributed coloration neighborhood search. Discrete Mathematics and Theoretical Computer Science, 26:335--358, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  51. A. Mukherjee and M. Hansen. A dynamic rerouting model for air traffic flow management. Transportation Research Part B: Methodological, 43(1):159--171, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  52. C. L. Mumford. New order-based crossovers for the graph coloring problem. In Parallel Problem Solving from Nature-PPSN IX, pages 880--889. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. N. Narayanaswamy and R. S. Babu. A note on first-fit coloring of interval graphs. Order, 25(1):49--53, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  54. N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi. Efficient pagerank tracking in evolving networks. In Proceedings of KDD, pages 875--884, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Appl. Math., 120(1-3):197--207, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. L. Ouerfelli and H. Bouziri. Greedy algorithms for dynamic graph coloring. In Proceedings of CCCA, pages 1--5, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  57. Y. Peng, B. Choi, B. He, S. Zhou, R. Xu, and X. Yu. Vcolor: A practical vertex-cut based approach for coloring large graphs. In Proceedings of ICDE, pages 97--108, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  58. D. C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Computers & Operations Research, 37(10):1822--1832, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Prestwich. Using an incomplete version of dynamic backtracking for graph colouring. Electronic Notes in Discrete Mathematics, 1:61--73, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  60. D. Preuveneers and Y. Berbers. Acodygra: an agent algorithm for coloring dynamic graphs. Symbolic and Numeric Algorithms for Scientific Computing, 6:381--390, 2004.Google ScholarGoogle Scholar
  61. R. A. Rossi and N. K. Ahmed. Coloring large complex networks. Social Network Analysis and Mining, 4(1):228, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  62. C. Schindelhauer. Mobility in wireless networks. In International Conference on Current Trends in Theory and Practice of Computer Science, pages 100--116, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. S. Smorodinsky. A note on the online first-fit algorithm for coloring k-inductive graphs. Information Processing Letters, 109(1):44--45, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. B. C. Steffen. Advice complexity of online graph problems. Ph.D Thesis, 2014.Google ScholarGoogle Scholar
  65. Z. Tang, B. Wu, L. Hu, and M. Zaker. More bounds for the grundy number of graphs. Journal of Combinatorial Optimization, 33(2):580--589, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529--550, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. S. Vishwanathan. Randomized online graph coloring. In Proceedings of FOCS, pages 464--469, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. D. J. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal, 10(1):85--86, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  69. Q. Wu and J.-K. Hao. Coloring large graphs based on independent set extraction. Computers & Operations Research, 39(2):283--290, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search. In Proceedings of ICDE, pages 387--398, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  71. M. Zaker. Results on the grundy chromatic number of graphs. Discrete mathematics, 306(23):3166-3173, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of STOC, pages 681--690, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Effective and efficient dynamic graph coloring
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 11, Issue 3
      November 2017
      150 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      • Published: 1 November 2017
      Published in pvldb Volume 11, Issue 3

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader