skip to main content
research-article

Discovery of convoys in trajectory databases

Authors Info & Claims
Published:01 August 2008Publication History
Skip Abstract Section

Abstract

As mobile devices with positioning capabilities continue to proliferate, data management for so-called trajectory databases that capture the historical movements of populations of moving objects becomes important. This paper considers the querying of such databases for convoys, a convoy being a group of objects that have traveled together for some time.

More specifically, this paper formalizes the concept of a convoy query using density-based notions, in order to capture groups of arbitrary extents and shapes. Convoy discovery is relevant for real-life applications in throughput planning of trucks and carpooling of vehicles. Although there has been extensive research on trajectories in the literature, none of this can be applied to retrieve correctly exact convoy result sets. Motivated by this, we develop three efficient algorithms for convoy discovery that adopt the well-known filter-refinement framework. In the filter step, we apply line-simplification techniques on the trajectories and establish distance bounds between the simplified trajectories. This permits efficient convoy discovery over the simplified trajectories without missing any actual convoys. In the refinement step, the candidate convoys are further processed to obtain the actual convoys. Our comprehensive empirical study offers insight into the properties of the paper's proposals and demonstrates that the proposals are effective and efficient on real-world trajectory data.

References

  1. Inrix, Inc. Smart Dust Network. http://www.inrix.com/techdustnetwork.asp.Google ScholarGoogle Scholar
  2. http://www.rtreeportal.org/Google ScholarGoogle Scholar
  3. http://daisy.aau.dk/Google ScholarGoogle Scholar
  4. H. Jeung, H. T. Shen, and X. Zhou. Convoy Queries in Spatio-Temporal Databases. In ICDE, pp. 1457--1459, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Al-Naymat, S. Chawla, and J. Gudmundsson. Dimensionality reduction of long duration and complex spatio-temporal queries. In ACM SAC, pp. 393--397, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Arumugam and C. Jermaine. Closest-point-of-approach join for moving object histories. In ICDE, p. 86, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed spatiotemporal trajectory joins. In ACM GIS, pp. 182--191, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with deterministic error bounds. VLDBJ, 15(3): 211--228, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Chen and R. T. Ng. On the marriage of Ip-norms and edit distance. In VLDB, pp. 792--803, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajectories. In SIGMOD, pp. 491--502, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required to represent a line or its character. The American Cartographer, 10(42):112--123, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In SIGKDD, pp. 226--231, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In ACM GIS, pp. 35--42, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of motion patterns in spatio-temporal data sets. In ACM GIS, pp. 250--257, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Gunopoulos. Discovering similar multidimensional trajectories. In ICDE, pp. 673--684, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Hershberger and J. Snoeyink. Speeding up the douglas-peucker line-simplification algorithm. In International Symposium on Spatial Data Handling, pp. 134--143, 1992.Google ScholarGoogle Scholar
  17. C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving objects. IEEE TKDE, 19(9): 1161--1174, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Jeong, N. Paton, A. Fernandes, and T. Griffiths. An experimental performance evaluation of spatiotemporal join strategies. Transactions in GIS, 9(2):129--156, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In SSTD, pp. 364--381, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-group framework. In SIGMOD, pp. 593--604, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Li, J. Han, and J. Yang. Clustering moving objects. In SIGKDD, pp. 617--622, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Z. Li. An algorithm for compressing digital contour data. The Cartographic Journal, 25(2): 143--146, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  23. N. Meratnia and R. A. de By. Spatiotemporal compression techniques for moving point objects. In EDBT, pp. 765--782, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic: modeling and monitoring cluster transitions. In SIGKDD, pp. 706--711, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences under time warping. In ICDE, pp. 201--208, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Zhou, D. Zhang, B. Salzberg, G. Cooperman, and G. Kollios. Close pair queries in moving object databases. In ACM GIS, pp. 2--11, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discovery of convoys in trajectory databases

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader