skip to main content
article

Direction-preserving trajectory simplification

Published:01 August 2013Publication History
Skip Abstract Section

Abstract

Trajectories of moving objects are collected in many applications. Raw trajectory data is typically very large, and has to be simplified before use. In this paper, we introduce the notion of direction-preserving trajectory simplification, and show both analytically and empirically that it can support a broader range of applications than traditional position-preserving trajectory simplification. We present a polynomial-time algorithm for optimal direction-preserving simplification, and another approximate algorithm with a quality guarantee. Extensive experimental evaluation with real trajectory data shows the benefit of the new techniques.

References

  1. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data. In VLDB'05, pages 853-864. Google ScholarGoogle Scholar
  2. S. Brakatsoulas, D. Pfoser, and N. Tryfona. Modeling, storing and mining moving object databases. In IDEAS'04, pages 68-77. Google ScholarGoogle Scholar
  3. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with deterministic error bounds. The VLDB Journal, 15(3):211-228, 2006. Google ScholarGoogle Scholar
  4. M. Chen, M. Xu, and P. Fränti. A fast o(n) multiresolution polygonal approximation algorithm for gps trajectory simplification. IEEE Transactions on Image Processing, 21(5), 2012.Google ScholarGoogle Scholar
  5. Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu. Trajectory simplification method for location-based social networking services. In Proceedings of the 2009 International Workshop on Location Based Social Networks, pages 33-40. ACM, 2009. Google ScholarGoogle Scholar
  6. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 11(2):112-122, 1973.Google ScholarGoogle Scholar
  7. F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining. In SIGMOD'07, pages 330-339. Google ScholarGoogle Scholar
  8. J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle. Compressing spatio-temporal trajectories. Algorithms and Computation, pages 763-775, 2007. Google ScholarGoogle Scholar
  9. C.-C. Hung, W.-C. Peng, and W.-C. Lee. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. The VLDB Journal, pages 1-24, 2011.Google ScholarGoogle Scholar
  10. G. Kellaris, N. Pelekis, and Y. Theodoridis. Map-matched trajectory compression. Journal of Systems and Software, 2013. Google ScholarGoogle Scholar
  11. A. Kolesnikov. Efficient online algorithms for the polygonal approximation of trajectory data. In MDM'11, pages 49-57. Google ScholarGoogle Scholar
  12. R. Lange, T. Farrell, F. Durr, and K. Rothermel. Remote real-time trajectory simplification. In PerComm'09, pages 1-10, 2009. Google ScholarGoogle Scholar
  13. J. G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE'08, pages 140-149. Google ScholarGoogle Scholar
  14. J. G. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. PVLDB'08, 1(1):1081-1094, 2008. Google ScholarGoogle Scholar
  15. J. G. Lee, J. Han, and K. Y. Whang. Trajectory clustering: a partition-and-group framework. In SIGMOD'07, pages 593-604. Google ScholarGoogle Scholar
  16. C. Long, R. C.-W.Wong, and H. Jagadish. Direction-preserving trajectory simplification (technical report). In http://www.cse.ust.hk/~raywong/paper/trajectory.pdf, 2013.Google ScholarGoogle Scholar
  17. N. Meratnia and R. de By. Spatiotemporal compression techniques for moving point objects. EDBT'04, pages 561-562.Google ScholarGoogle Scholar
  18. J. Muckell, J. H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. Ravi. Squish: an online approach for gps trajectory compression. In COM.Geo'11, pages 13:1-13:8. Google ScholarGoogle Scholar
  19. D. Patel, C. Sheng, W. Hsu, and M. L. Lee. Incorporating duration information for trajectory classification. In ICDE'12, pages 1132-1143. Google ScholarGoogle Scholar
  20. N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and Y. Theodoridis. Similarity search in trajectory databases. In TIME'07, pages 129-140. Google ScholarGoogle Scholar
  21. M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory streams with spatiotemporal criteria. In SSDBM'06, pages 275-284. Google ScholarGoogle Scholar
  22. M. Singh, Q. Zhu, and H. Jagadish. Swst: A disk based index for sliding window spatio-temporal data. In ICDE'12, pages 342-353. Google ScholarGoogle Scholar
  23. J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In KDD'11, pages 316-324. Google ScholarGoogle Scholar
  24. Y. Zheng, X. Xie, and W. Y. Ma. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 33(2):32-40, 2010.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 6, Issue 10
    August 2013
    180 pages

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 August 2013
    Published in pvldb Volume 6, Issue 10

    Qualifiers

    • article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader