skip to main content
research-article

On obtaining stable rankings

Published:01 November 2018Publication History
Skip Abstract Section

Abstract

Decision making is challenging when there is more than one criterion to consider. In such cases, it is common to assign a goodness score to each item as a weighted sum of its attribute values and rank them accordingly. Clearly, the ranking obtained depends on the weights used for this summation. Ideally, one would want the ranked order not to change if the weights are changed slightly. We call this property stability of the ranking. A consumer of a ranked list may trust the ranking more if it has high stability. A producer of a ranked list prefers to choose weights that result in a stable ranking, both to earn the trust of potential consumers and because a stable ranking is intrinsically likely to be more meaningful.

In this paper, we develop a framework that can be used to assess the stability of a provided ranking and to obtain a stable ranking within an "acceptable" range of weight values (called "the region of interest"). We address the case where the user cares about the rank order of the entire set of items, and also the case where the user cares only about the top-k items. Using a geometric interpretation, we propose algorithms that produce stable rankings. In addition to theoretical analyses, we conduct extensive experiments on real datasets that validate our proposal.

References

  1. M. Gladwell. The order of things: What college rankings really tell us. The New Yorker Magazine, Feb 14, 2011.Google ScholarGoogle Scholar
  2. N. A. Bowman and M. N. Bastedo. Anchoring effects in world university rankings: exploring biases in reputation scores. Higher Education, 61(4):431--444, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Monks and R. G. Ehrenberg. The impact of us news and world report college rankings on admission outcomes and pricing decisions at selective private institutions. Technical report, National Bureau of Economic Research, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Langville and C. Meyer. Who's #1? The Science of Rating and Ranking. Princeton University Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish, and G. Miklau. A nutritional label for rankings. In SIGMOD, pages 1773--1776. ACM, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. CSMetrics. www.csmetrics.org/. {Online; accessed April 2018}.Google ScholarGoogle Scholar
  7. H. Edelsbrunner. Algorithms in combinatorial geometry, volume 10. Springer Science & Business Media, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages 421--430. IEEE, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative skyline operator. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 86--95. IEEE, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing representative databases. PVLDB, 3(1--2):1114--1124, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing k-regret minimizing sets. PVLDB, 7(5):389--400, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I.-F. Su, Y.-C. Chung, and C. Lee. Top-k combinatorial skyline queries. In International Conference on Database Systems for Advanced Applications, pages 79--93. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das. Designing fair ranking schemes. In SIGMOD. ACM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das. Discovering the skyline of web databases. PVLDB, 9(7):600--611, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. V. Zaruba. Crowdsourcing pareto-optimal object finding by pairwise comparisons. In CIKM, pages 753--762. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On obtaining stable rankings. CoRR, abs/1804.10990, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM Journal on Computing, 17(5):967--974, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Orlik and H. Terao. Arrangements of hyperplanes, volume 300. Springer, 2013.Google ScholarGoogle Scholar
  19. B. Grünbaum. Arrangements of hyperplanes. In Convex Polytopes. Springer, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. V. V. Schechtman and A. N. Varchenko. Arrangements of hyperplanes and lie algebra homology. Inventiones mathematicae, 106(1), 1991.Google ScholarGoogle Scholar
  21. P. K. Agarwal and M. Sharir. Arrangements and their applications. Handbook of computational geometry, 2000.Google ScholarGoogle Scholar
  22. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in relational database systems. CSUR, 40(4), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences, 66(4), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Asudeh, N. Zhang, and G. Das. Query reranking as a service. PVLDB, 9(11):888--899, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. D. Gunasekaran, A. Asudeh, S. Hasani, N. Zhang, A. Jaoua, and G. Das. QR2: A third-party query reranking service over web databases. In ICDE, pages 1653--1656. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Blaker. Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics, 28(4):783--798, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  27. F. J. Hickernell, L. Jiang, Y. Liu, and A. B. Owen. Guaranteed conservative fixed width confidence intervals via monte carlo sampling. In Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 105--128. Springer, 2013.Google ScholarGoogle Scholar
  28. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13--30, 1963.Google ScholarGoogle Scholar
  29. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, pages 493--507, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. P. Robert. Monte carlo methods. Wiley Online Library, 2004.Google ScholarGoogle Scholar
  31. R. Durrett. Probability: theory and examples. Cambridge university press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. Jagadish. RRR: Rank-regret representative. In SIGMOD. ACM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. E. Muller. A note on a method for generating points uniformly on n-dimensional spheres. Communications of the ACM, 2(4), 1959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. Marsaglia et al. Choosing a point from the surface of a sphere. The Annals of Mathematical Statistics, 43(2), 1972.Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Cramér. Mathematical methods of statistics (PMS-9), volume 9. Princeton university press, 2016.Google ScholarGoogle Scholar
  36. S. Lucidl and M. Piccioni. Random tunneling by means of acceptance-rejection sampling for global optimization. Journal of optimization theory and applications, 62(2):255--277, 1989.Google ScholarGoogle Scholar
  37. L. Devroye. Sample-based non-uniform random variate generation. In Proceedings of the 18th conference on Winter simulation, pages 260--265. ACM, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball computation in high dimensions. In European Symposium on Algorithms, pages 630--641. Springer, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Li. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of Mathematics and Statistics, 4(1):66--70, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  40. T. F. I. de Football Association (FIFA). Fifa rankings. www.fifa.com/fifa-world-ranking/ranking-table/men/index.html. {Online; accessed April 2018}.Google ScholarGoogle Scholar
  41. FIFA. Fifa/coca-cola world ranking procedure. http://www.fifa.com/fifa-world-ranking/procedure/men.html, 28 March 2008.Google ScholarGoogle Scholar
  42. BlueNile. www.bluenile.com/diamond-search? {Online; accessed Feb. 2018}.Google ScholarGoogle Scholar
  43. US Department of Transportation's dataset. http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time.Google ScholarGoogle Scholar
  44. F. Geerts, H. Mannila, and E. Terzi. Relational link-based ranking. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages 552--563. VLDB Endowment, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Chaudhuri and G. Das. Keyword querying and ranking in databases. PVLDB, 2(2):1658--1659, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD, pages 383--394. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Efficient searching with linear constraints. JCSS, 61(2), 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient computation of regret-ratio minimizing set: A compact maxima representative. In SIGMOD, pages 821--834. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking and result visualization for life sciences publications. In ICDE, pages 860--871, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  50. S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic ranking of database query results. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages 888--899. VLDB Endowment, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in probabilistic databases. PVLDB, 2(1):502--513, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. J. Li and A. Deshpande. Ranking continuous probabilistic datasets. PVLDB, 3(1--2):638--649, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. V. Hristidis and Y. Papakonstantinou. Algorithms and applications for answering ranked queries using ranked views. The VLDB Journal, 13(1):49--70, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries using views. In Proceedings of the 32nd international conference on Very large data bases, pages 451--462. VLDB Endowment, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion technique: indexing for linear optimization queries. In SIGMOD, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. G. R. Hjaltason and H. Samet. Ranking in spatial databases. In SSTD. Springer, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. F. Rahman, A. Asudeh, N. Koudas, and G. Das. Efficient computation of subspace skyline over categorical domains. In CIKM, pages 407--416. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars. Computational Geometry: Introduction. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. K. Mouratidis. Geometric approaches for top-k queries. PVLDB, 10(12):1985--1987, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 12, Issue 3
    November 2018
    138 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 November 2018
    Published in pvldb Volume 12, Issue 3

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader