skip to main content
research-article

Real-time distributed co-movement pattern detection on streaming trajectories

Authors Info & Claims
Published:01 June 2019Publication History
Skip Abstract Section

Abstract

With the widespread deployment of mobile devices with positioning capabilities, increasingly massive volumes of trajectory data are being collected that capture the movements of people and vehicles. This data enables co-movement pattern detection, which is important in applications such as trajectory compression and future-movement prediction. Existing co-movement pattern detection studies generally consider historical data and thus propose offline algorithms. However, applications such as future movement prediction need real-time processing over streaming trajectories. Thus, we investigate real-time distributed co-movement pattern detection over streaming trajectories.

Existing off-line methods assume that all data is available when the processing starts. Nevertheless, in a streaming setting, unbounded data arrives in real time, making pattern detection challenging. To this end, we propose a framework based on Apache Flink, which is designed for efficient distributed streaming data processing. The framework encompasses two phases: clustering and pattern enumeration. To accelerate the clustering, we use a range join based on two-layer indexing, and provide techniques that eliminate unnecessary verifications. To perform pattern enumeration efficiently, we present two methods FBA and VBA that utilize id-based partitioning. When coupled with bit compression and candidate-based enumeration techniques, we reduce the enumeration cost from exponential to linear. Extensive experiments offer insight into the efficiency of the proposed framework and its constituent techniques compared with existing methods.

References

  1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. PVLDB, 29:81--92, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In SIGMOD, pages 147--160, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust access method for points and rectangles. In SIGMOD, pages 322--331, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Bohm, B. Braunmuller, F. Krebs, and H. P. Kriegel. Epsilon grid order: An algorithm for the similarity join on massive high-dimensional data. SIGMOD Record, 30(2):379--388, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica, 6(2):153--180, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Chen, Z. Lv, X. Yu, and Y. Liu. Sliding window top-k monitoring over distributed data streams. DSE, 2(4):289--300, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  7. Y. Chen and L. Tu. Density-based clustering for real-time stream data. In SIGKDD, pages 133--142, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Cordova and T. S. Moh. Dbscan on resilient distributed datasets. In HPCS, pages 531--540, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226--231, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Q. Fan, D. Zhang, H. Wu, and K. L. Tan. A general and parallel platform for mining co-movement patterns over large-scale trajectories. PVLDB, 10(4):313--324, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Gedik, H. Andrade, K. L. Wu, P. S. Yu, and M. Doo. SPADE: the System S declarative stream processing engine. In SIGMOD, pages 1123--1134, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Gu, J. Wang, and C. Zaniolo. Ranking support for matched patterns over complex event streams: The CEPR system. In ICDE, pages 1354--1357, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Gudmundsson and M. van Kreveld. Computing longest duration flocks in trajectory data. In GIS, pages 35--42, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. H., N. Mamoulis, and D. W. Cheung. Discover of periodic patterns in spatiotemporal sequences. TKDE, 19(4):453--467, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. He, H. Tan, W. Luo, S. Feng, and J. Fan. Mr-dbscan: A scalable mapreduce-based dbscan algorithm for heavily skewed data. Frontiers of Computer Science, 8(1):83--99, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Jeung, Q. Liu, H. Shen, and Z. X. A hybrid prediction model for moving objects. In ICDE, pages 70--79, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. PVLDB, 1(1):1068--1080, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. Li, V. Ceikute, C. S. Jensen, and K. L. Tan. Effective online group discovery in trajectory databases. TKDE, 12:2752--2766, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Li, J. Bailey, and L. Kulik. Efficient mining of platoon patterns in trajectory databases. DKE, 100:167--187, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. PVLDB, 3(1--2):723--734, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In KDD, pages 1099--1108, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely dataflow system. In SOSP, pages 439--455, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Nikos and D. Papadias. Slot index spatial join. TKDE, 15(1):211--231, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Puntheeranurak, T. T. Shein, and M. Imamura. Efficient discovery of traveling companion from evolving trajectory data stream. In COMPSAC, pages 448--453, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Riyadh, N. Mustapha, M. Sulaiman, and N. B. M. Sharef. CC-TRS: Continuous clustering of trajectory stream data based on micro cluster life. Mathematical Problems in Engineering, pages 1--10, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. L. C. Silva, K. Zeitouni, and J. A. de Macedo. Online clustering of trajectory data stream. In MDM, pages 112--121, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  27. L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. C. Hung, and W. C. Peng. On discovery of traveling companions from streaming trajectories. In ICDE, pages 186--197, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in spatio-temporal data. In SIGSPATIAL, pages 286--295, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Wang, E. Lim, and S. Y. Hwang. Efficient mining of group patterns from user movement data. PVLDB, 57(3):240--282, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Wu, Y. Ge, E. Chen, R. Hong, J. Du, and M. Wang. Modeling the evolution of users preferences and social links in social networking services. TKDE, 29(6):1240--1253, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Yang, J. Guo, Z. J. Wang, Y. Wang, J. Zhang, L. Hu, J. Yin, and J. Cao. Fastpm: An approach to pattern matching via distributed stream processing. Information Sciences, 453:263--280, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. Yang, Z. Guo, Z. Xie, E. A. Rundensteiner, and M. O. Ward. Interactive visual exploration of neighbor-based patterns in data streams. In SIGMOD, pages 1151--1154, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Yoon and C. Shahabi. Accurate discovery of valid convoys from moving object trajectories. In ICDM workshops, pages 636--643, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Yu, Q. Wang, X. Wang, H. Wang, and J. He. Online clustering for trajectory data stream of moving objects. Computer science and information systems, 10(3):1293--1317, 2013.Google ScholarGoogle Scholar
  35. Z. Yu, X. Yu, Y. Liu, W. Li, and J. Pei. Mining frequent co-occurrence patterns across multiple data streams. In EDBT, pages 73--84, 2015.Google ScholarGoogle Scholar
  36. F. Zhang, Y. Zheng, D. Xu, Z. Du, Y. Wang, R. Liu, and X. Ye. Real-time spatial queries for moving objects using storm topology. ISPRS International Journal of Geo-Information, 5(10):178, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  37. Y. Zheng. Trajectory data mining: an overview. TITS, 6(3):29:1--29:41, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts, methodologies, and applications. ACM TIST, 5(3):38:1--38:55, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 12, Issue 10
    June 2019
    177 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 June 2019
    Published in pvldb Volume 12, Issue 10

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader