skip to main content
research-article

Towards bridging theory and practice: hop-constrained s-t simple path enumeration

Published:09 December 2019Publication History
Skip Abstract Section

Abstract

Graph is a ubiquitous structure representing entities and their relationships applied in many areas such as social networks, web graphs, and biological networks. One of the fundamental tasks in graph analytics is to investigate the relations between two vertices (e.g., users, items and entities) such as how a vertex A influences another vertex B, or to what extent A and B are similar to each other, based on the graph topology structure. For this purpose, we study the problem of hop-constrained s-t simple path enumeration in this paper, which aims to list all simple paths from a source vertex s to a target vertex t with hop-constraint k. We first propose a polynomial delay algorithm, namely BC-DFS, based on barrier-based pruning technique. Then a join-oriented algorithm, namely JOIN, is designed to further enhance the query response time. On the theoretical side, BC-DFS is a polynomial delay algorithm with O(km) time per output where m is the number of edges in the graph. This time complexity is the same as the best known theoretical result for the polynomial delay algorithms of this problem. On the practical side, our comprehensive experiments on 15 real-life networks demonstrate the superior performance of the BC-DFS algorithm compared to the state-of-the-art techniques. It is also reported that the JOIN algorithm can further significantly enhance the query response time.

References

  1. J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem. Networks, 19(4):379--394, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Bernstein and S. Chechik. Incremental topological sort and cycle detection in expected total time. In SODA, pages 21--34, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and G. Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In SODA, pages 1884--1896, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  4. K. Böhmová, L. Häfliger, M. Mihalák, T. Pröger, G. Sacomoto, and M.-F. Sagot. Computing and listing st-paths in public transportation networks. Theory of Computing Systems, 62(3):600--621, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. G. Cash. The number of n-cycles in a graph. Applied Mathematics and Computation, 184(2):1080--1083, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Chang, X. Lin, L. Qin, J. X. Yu, and J. Pei. Efficiently computing top-k shortest path join. In EDBT 2015-18th International Conference on Extending Database Technology, Proceedings, 2015.Google ScholarGoogle Scholar
  7. Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and J. Zhang. Exploring communities in large profiled graphs. IEEE Transactions on Knowledge and Data Engineering, 2018.Google ScholarGoogle Scholar
  8. G. L. D. and K. N. P. Identifying certain types of parts of a graph and computing their number. Ukrainian Mathematical Journal, 24(3):313--321, 1972.Google ScholarGoogle Scholar
  9. E. de Queirós Vieira Martins and M. M. B. Pascoal. A new implementation of yen's ranking loopless paths algorithm. 4OR, 1(2):121--133, 2003.Google ScholarGoogle Scholar
  10. D. Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652--673, 1998.Google ScholarGoogle Scholar
  11. Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu. Effective and efficient attributed community search. The VLDB Journal The International Journal on Very Large Data Bases, 26(6):803--828, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community search over large spatial graphs. Proceedings of the VLDB Endowment, 10(6):709--720, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search for large attributed graphs. Proceedings of the VLDB Endowment, 9(12):1233--1244, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Fang, R. Cheng, S. Luo, J. Hu, and K. Huang. C-explorer: browsing communities in large graphs. Proceedings of the VLDB Endowment, 10(12):1885--1888, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin. A survey of community search over big graphs. The VLDB Journal, Jul 2019.Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and X. Chen. On spatial-aware community search. IEEE Transactions on Knowledge and Data Engineering, 31(4):783--798, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu. Effective and efficient community search over large directed graphs. IEEE Transactions on Knowledge and Data Engineering, 2018.Google ScholarGoogle Scholar
  18. Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin. Efficient algorithms for densest subgraph discovery. Proc. VLDB Endow., 12(11):1719--1732, July 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Freitas, J. C. P. da Silva, E. Curry, and P. Buitelaar. A distributional semantics approach for selective reasoning on commonsense graph knowledge bases. In International Conference on Applications of Natural Language to Data Bases/Information Systems, pages 21--32. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational approach for shortest path discovery over large graphs. Proceedings of the VLDB Endowment, 5(4):358--369, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Gao, H. Qiu, X. Jiang, T. Wang, and D. Yang. Fast top-k simple shortest paths discovery in graphs. In Proceedings of the 19th ACM international conference on Information and knowledge management, pages 509--518. ACM, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. P. Giscard, N. Kriege, and R. C. Wilson. A general purpose algorithm for counting simple cycles and simple paths of any length. CoRR, abs/1612.05531, 2016.Google ScholarGoogle Scholar
  23. Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and the replacement paths problems. Information Processing Letters, 109(7):352--355, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Grossi, A. Marino, and L. Versari. Efficient algorithms for listing k disjoint st-paths in graphs. In Latin American Symposium on Theoretical Informatics, pages 544--557. Springer, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  25. G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem. Networks, 10(4):293--309, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new algorithm and its implementation. ACM Transactions on Algorithms (TALG), 3(4):45, 2007.Google ScholarGoogle Scholar
  27. D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research, 56(4):992--1009, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Hu, R. Cheng, K. C.-C. Chang, A. Sankar, Y. Fang, and B. Y. Lam. Discovering maximal motif cliques in large heterogeneous information networks. In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 746--757. IEEE, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In Column generation, pages 33--65. Springer, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  30. R. Jin and N. Ruan. Shortest path computation in large networks, Dec. 19 2013. US Patent App. 13/899,124.Google ScholarGoogle Scholar
  31. D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J. Comput., 4(1):77--84, 1975.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maximal independent sets. Inf. Process. Lett., 27(3):119--123, 1988.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. V. Karsten, D. Pisinger, S. Ropke, and B. D. Brouer. The time constrained multi-commodity network flow problem and its application to liner shipping network design. Transportation Research Part E: Logistics and Transportation Review, 76:122--138, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  34. N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple paths. Networks, 12(4):411--427, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  35. A. A. Khan and H. Singh. Petri net approach to enumerate all simple paths in a graph. Electronics Letters, 16(8):291--292, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  36. D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms. Addison-Wesley Professional, 2011.Google ScholarGoogle Scholar
  37. S. R. Kosaraju and G. F. Sullivan. Detecting cycles in dynamic graphs in polynomial time (preliminary version). In STOC, pages 398--406, 1988.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Kumar and T. Calders. 2scent: An efficient algorithm to enumerate all simple temporal cycles. PVLDB, 11(11):1441--1453, 2018.Google ScholarGoogle Scholar
  39. J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web, pages 1343--1350. ACM, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. L, J. Nadeau, G. Ozsoyoglu, Z. Ozsoyoglu, G. Schaeffer, M. Tasan, and W. Xu. Pathways database system: An integrated system for biological pathways. Bioinformatics, 19:930--7, 06 2003.Google ScholarGoogle ScholarCross RefCross Ref
  41. L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin, W. Zhang, et al. Distributed subgraph matching on timely dataflow. Proceedings of the VLDB Endowment, 12(10):1099--1112, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. N. Lao and W. W. Cohen. Relational retrieval using a combination of path-constrained random walks. Machine Learning, 81(1):53--67, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. U. Leser. A query language for biological networks. Bioinformatics, 21:ii33--9, 10 2005.Google ScholarGoogle Scholar
  44. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.Google ScholarGoogle Scholar
  45. B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (a, β)-core computation: an index-based approach. In The World Wide Web Conference, pages 1130--1141. ACM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. B. Liu, F. Zhang, C. Zhang, W. Zhang, and X. Lin. Corecube: Core decomposition in multilayer graphs. In International Conference on Web Information Systems Engineering, pages 694--710. Springer, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. H. Liu, C. Jin, B. Yang, and A. Zhou. Finding top-k shortest paths with diversity. IEEE Transactions on Knowledge and Data Engineering, 30(3):488--502, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  48. E. Q. Martins and M. M. Pascoal. A new implementation of yens ranking loopless paths algorithm. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2):121--133, 2003.Google ScholarGoogle Scholar
  49. S. Mazumder and B. Liu. Context-aware path ranking for knowledge base completion. In IJCAI, pages 1195--1201, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  50. M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Compiling graph substructures into sentential decision diagrams. In AAAI, pages 1213--1221, 2017.Google ScholarGoogle Scholar
  51. Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. Efficient probabilistic k-core computation on uncertain graphs. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 1192--1203. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  52. X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou. Real-time constrained cycle detection in large dynamic graphs. PVLDB, 11(12):1876--1888, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. C. Rivera, H. M. Afsar, and C. Prins. Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem. European Journal of Operational Research, 249(1):93--104, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  54. R. Rizzi, G. Sacomoto, and M. Sagot. Efficiently listing bounded length st-paths. In IWOCA, pages 318--329, 2014.Google ScholarGoogle Scholar
  55. L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted directed graphs. In International Colloquium on Automata, Languages, and Programming, pages 249--260. Springer, 2005.Google ScholarGoogle Scholar
  56. R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics and visualization. In AAAI, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  57. J.-J. Salazar-González. Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier. Omega, 43:71--82, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  58. N. Shi, S. Zhou, F. Wang, Y. Tao, and L. Liu. The multi-criteria constrained shortest path problem. Transportation Research Part E: Logistics and Transportation Review, 101:13--29, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  59. O. Shmueli. Dynamic cycle detection. Inf. Process. Lett., 17(4):185--188, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  60. C. Sommer. Shortest-path queries in static networks. ACM Comput. Surv., 46(4):45:1--45:31, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. L. Talarico, K. Sörensen, and J. Springael. The k-dissimilar vehicle routing problem. European Journal of Operational Research, 244(1):129--140, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  62. Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages 421--432. ACM, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. C. Voss, M. Moll, and L. E. Kavraki. A heuristic approach to finding diverse short paths. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4173--4179. IEEE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  64. K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient computing of radius-bounded k-cores. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 233--244. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  65. K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang. Vertex priority based butterfly counting for large-scale bipartite networks. Proceedings of the VLDB Endowment, 12(10):1139--1152, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. L. Wang, L. Yang, and Z. Gao. The constrained shortest path problem with stochastic correlated link travel times. European Journal of Operational Research, 255(1):43--57, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  67. S. Wang, X. Xiao, Y. Yang, and W. Lin. Effective indexing for approximate constrained shortest path queries on large road networks. Proceedings of the VLDB Endowment, 10(2):61--72, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. N. Yasuda, T. Sugaya, and S. Minato. Fast compilation of s-t paths on a graph for counting and enumeration. In Proceedings of the 3rd Workshop on Advanced Methodologies for Bayesian Networks, AMBN, pages 129--140, 2017.Google ScholarGoogle Scholar
  69. J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712--716, 1971.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. J. X. Yu and J. Cheng. Graph reachability queries: A survey. In Managing and Mining Graph Data, pages 181--215. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  71. D. Yue, X. Wu, Y. Wang, Y. Li, and C. Chu. A review of data mining-based financial fraud detection research. In International Conference on Wireless Communications, Networking and Mobile Computing, pages 5519 -- 5522, 10 2007.Google ScholarGoogle ScholarCross RefCross Ref
  72. A. D. Zhu, X. Xiao, S. Wang, and W. Lin. Efficient single-source shortest path and distance queries on large graphs. In ACM SIGKDD, pages 998--1006, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards bridging theory and practice: hop-constrained s-t simple path enumeration
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 13, Issue 4
      December 2019
      167 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      • Published: 9 December 2019
      Published in pvldb Volume 13, Issue 4

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader