skip to main content
research-article

Fair task assignment in spatial crowdsourcing

Authors Info & Claims
Published:01 July 2020Publication History
Skip Abstract Section

Abstract

With the pervasiveness of mobile devices, wireless broadband and sharing economy, spatial crowdsourcing is becoming part of our daily life. Existing studies on spatial crowdsourcing usually focus on enhancing the platform interests and customer experiences. In this work, however, we study the fair assignment of tasks to workers in spatial crowdsourcing. That is, we aim to assign tasks, considered as a resource in short supply, to individual spatial workers in a fair manner. In this paper, we first formally define an online bi-objective matching problem, namely the Fair and Effective Task Assignment (FETA) problem, with its special cases/variants of it to capture most typical spatial crowdsourcing scenarios. We propose corresponding solutions for each variant of FETA. Particularly, we show that the dynamic sequential variant, which is a generalization of an existing fairness scheduling problem, can be solved with an O(n) fairness cost bound (n is the total number of workers), and give an O(n/m) fairness cost bound for the m-sized general batch case (m is the minimum batch size). Finally, we evaluate the effectiveness and efficiency of our algorithm on both synthetic and real data sets.

References

  1. [online] didi chuxing. https://www.didichuxing.com.Google ScholarGoogle Scholar
  2. [online] nyc taxi fare. https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page.Google ScholarGoogle Scholar
  3. [online] taskrabbit. https://www.taskrabbit.com.Google ScholarGoogle Scholar
  4. [online] Eleme. https://www.ele.me.Google ScholarGoogle Scholar
  5. [online] Seamless. https://www.seamless.com/.Google ScholarGoogle Scholar
  6. [online] trip record data from nyc taxi and limousine commission. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.Google ScholarGoogle Scholar
  7. [online] uber. https://www.uber.com.Google ScholarGoogle Scholar
  8. [online] uber: How does uber match riders with drivers? https://marketplace.uber.com/matching.Google ScholarGoogle Scholar
  9. G. Aggarwal, Y. Cai, A. Mehta, and G. Pierrakos. Biobjective online bipartite matching. In International Conference on Web and Internet Economics, pages 218--231. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Ajtai, J. Aspnes, M. Naor, Y. Rabani, L. J. Schulman, and O. Waarts. Fairness in scheduling. Journal of Algorithms, 29(2):306--357, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. cambridge university press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. E. Burkard, M. Dell'Amico, and S. Martello. Assignment problems, revised reprint, volume 125. Siam, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Cheng, X. Lian, Z. Chen, et al. Reliable diversity-based spatial crowdsourcing by moving workers. PVLDB, 8(10):1022--1033, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Cheng, H. Xin, and L. Chen. Utility-aware ridesharing on road networks. In SIGMOD, pages 1197--1210, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Coppersmith, T. Nowicki, G. Paleologo, C. Tresser, and C. W. Wu. The optimality of the online greedy algorithm in carpool and chairman assignment problems. ACM Transactions on Algorithms (TALG), 7(3):37, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. T. Emmerich and A. H. Deutz. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural computing, 17(3):585--609, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Esfandiari, N. Korula, and V. Mirrokni. Bi-objective online matching and submodular allocations. In Advances in Neural Information Processing Systems, pages 2739--2747, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Fagin and J. H. Williams. A fair carpool scheduling algorithm. IBM Journal of Research and development, 27(2):133--139, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Furuhata, M. Dessouky, F. Ordóñez, M. E. Brunet, X. Wang, and S. Koenig. Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: Methodological, 57:28--46, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman San Francisco, 1979.Google ScholarGoogle Scholar
  21. U. U. Hassan and E. Curry. A multi-armed bandit approach to online spatial task assignment. In UTC-ATC-ScalCom. IEEE, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with spatial crowdsourcing. In SIGSPATIAL. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd: trustworthy query answering with spatial crowdsourcing. In SIGSPATIAL. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Korula, V. S. Mirrokni, and M. Zadimoghaddam. Bicriteria online matching: Maximizing weight and cardinality. In International conference on web and internet economics, pages 305--318. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Mneimneh and S. Farhat. The offline carpool problem revisited. In International Symposium on Mathematical Foundations of Computer Science, pages 483--492. Springer, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Naor. On fairness in the carpool problem. Journal of Algorithms, 55(1):93--98, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka. Spatial task assignment for crowd sensing with cloaked locations. In MDM, volume 1, pages 73--82. IEEE, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Song, Y. Tong, and et al. Trichromatic online matching in real-time spatial crowdsourcing. ICDE, pages 1009--1020, 2017.Google ScholarGoogle Scholar
  29. R. E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex algorithm. Mathematical Programming, 78(2):169--177, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H.-F. Ting and X. Xiang. Near optimal algorithms for online maximum edge-weighted b-matching and two-sided vertex-weighted b-matching. Theoretical Computer Science, 607:247--256, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. To, G. Ghinita, and C. Shahabi. A framework for protecting worker location privacy in spatial crowdsourcing. PVLDB, 7(10):919--930, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial crowdsourcing framework. ACM TSAS, 1(1):2, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Tong, L. Chen, and C. Shahabi. Spatial crowdsourcing: Challenges, techniques, and applications. PVLDB, 10:1988--1991, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv. SLADE: A smart large-scale task decomposer in crowdsourcing. IEEE Trans. Knowl. Data Eng., 30(8):1588--1601, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Tong, J. She, and et al. Online mobile micro-task allocation in spatial crowdsourcing. ICDE, pages 49--60, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  36. Y. Tong, L. Wang, and et al. Flexible online task assignment in real-time spatial data. PVLDB, 10:1334--1345, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye. Dynamic pricing in spatial crowdsourcing: A matching-based approach. SIGMOD, pages 773--788, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen. Two-sided online micro-task assignment in spatial crowdsourcing. IEEE Transactions on Knowledge and Data Engineering, 2019.Google ScholarGoogle Scholar
  39. Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A unified approach to route planning for shared mobility. PVLDB, 11(11):1633--1646, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Tong and Z. Zhou. Dynamic task assignment in spatial crowdsourcing. SIGSPATIAL Special, 10(2):18--25, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi. Spatial crowdsourcing: a survey. The VLDB Journal, 29(1):217--250, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In International Symposium on Algorithms and Computation, pages 92--101. Springer, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. P. Williamson. [online] section 3.1.1, lecture notes on network flow algorithms. https://people.orie.cornell.edu/dpw/techreports/cornell-flow.pdf, 2004.Google ScholarGoogle Scholar
  44. D. P. Williamson. Network Flow Algorithms. Cambridge University Press, 2019.Google ScholarGoogle Scholar
  45. Y. Zeng, Y. Tong, and L. Chen. Last-mile delivery made practical: An efficient route planning framework with theoretical guarantees. PVLDB, 13(3):320--333, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zeng, Y. Tong, L. Chen, and Z. Zhou. Latency-oriented task completion via spatial crowdsourcing. In ICDE, pages 317--328, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  47. B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng. Preference-aware task assignment in on-demand taxi dispatching: An online stable matching approach. In AAAI Conference on Artificial Intelligence (AAAI 2019), 2019.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 13, Issue 12
    August 2020
    1710 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 July 2020
    Published in pvldb Volume 13, Issue 12

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader