skip to main content
research-article

Fairly evaluating and scoring items in a data set

Published:01 August 2020Publication History
Skip Abstract Section

Abstract

We frequently compute a score for each item in a data set, sometimes for its intrinsic value, but more often as a step towards classification, ranking, and so forth. The importance of computing this score fairly cannot be overstated. In this tutorial, we will develop a framework for how to think about this task, and then present techniques for responsible scoring and link these to traditional data management challenges.

References

  1. J. Mason. The secret trust scores companies use to judge us all. The Wall Street Journal, April 6, 2019.Google ScholarGoogle Scholar
  2. The breast cancer risk assessment tool. bcrisktool.cancer.gov, (accessed March 2020).Google ScholarGoogle Scholar
  3. World cup 2018 seeding: Pots, procedure & all you need to know ahead of the draw. GOAL.COM, 12/1/2017.Google ScholarGoogle Scholar
  4. How u.s. news calculated the 2020 best graduate schools rankings. bit.ly/39HjnGQ, 3/11/2019.Google ScholarGoogle Scholar
  5. P. Mozur, R. Zhong, and A. Krolik. In coronavirus fight, china gives citizens a color code, with red flags. The New York Times, March 1, 2020.Google ScholarGoogle Scholar
  6. A. Olteanu, C. Castillo, F. Diaz, and E. Kiciman. Social data: Biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2:13, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Barocas and A. D. Selbst. Big data's disparate impact. Calif. L. Rev., 104:671, 2016.Google ScholarGoogle Scholar
  8. R. Buddin. Gender gaps in high school gpa and act scores. ACT Research & Policy, 2014.Google ScholarGoogle Scholar
  9. C. Roth. Women job applicants punished for higher grades, study finds. WOSU Public Media, Mar 26, 2018.Google ScholarGoogle Scholar
  10. A. D. Selbst. Disparate impact in big data policing. Ga. L. Rev., 52:109, 2017.Google ScholarGoogle Scholar
  11. J. L. Santos, N. L. Cabrera, and K. J. Fosnacht. Is "race-neutral" really race-neutral?: Disparate impact towards underrepresented minorities in post-209 uc system admissions. J. High. Educ, 81(6):605--631, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. F. Vidal and J. Menajovsky. Algorithm bias in credit scoring: What's inside the black box? CGAP blog, 2019.Google ScholarGoogle Scholar
  13. P. T. Kim. Data-driven discrimination at work. Wm. & Mary L. Rev., 58:857, 2016.Google ScholarGoogle Scholar
  14. I. Žliobaitė. Measuring discrimination in algorithmic decision making. DATA MIN KNOWL DISC, 31(4):1060--1089, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Barocas, M. Hardt, and A. Narayanan. Fairness and machine learning: Limitations and opportunities. fairmlbook.org, 2019.Google ScholarGoogle Scholar
  16. S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making and the cost of fairness. In SIGKDD. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. K. Menon and R. C. Williamson. The cost of fairness in binary classification. In FAT*, 2018.Google ScholarGoogle Scholar
  18. J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination of risk scores. CoRR, abs/1609.05807, 2016.Google ScholarGoogle Scholar
  19. S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. On the (im) possibility of fairness. CoRR, abs/1609.07236, 2016.Google ScholarGoogle Scholar
  20. J. Neyman and E. S. Pearson. Contributions to the theory of testing statistical hypotheses. Statistical Research Memoirs, 1936.Google ScholarGoogle Scholar
  21. A. Asudeh, Z. Jin, and H. Jagadish. Assessing and remedying coverage for a given dataset. In ICDE, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. A. Baeza-Yates. Big data or right data? In AMW, 2013.Google ScholarGoogle Scholar
  23. A. Narayanan. Translation tutorial: 21 fairness definitions and their politics. In FAT*, 2018.Google ScholarGoogle Scholar
  24. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In ITCS, pages 214--226, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Kearns, S. Neel, A. Roth, and Z. S. Wu. An empirical study of rich subgroup fairness for machine learning. In FAT*, pages 100--109, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Kearns, S. Neel, A. Roth, and Z. S. Wu. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In ICML, pages 2564--2572, 2018.Google ScholarGoogle Scholar
  27. M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich. Diversity in big data: A review. Big data, 5(2):73--84, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On obtaining stable rankings. PVLDB, 12(3):237--250, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and D. Roth. A comparative study of fairness-enhancing interventions in machine learning. In FAT*, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Steinhardt. Robust Learning: Information Theory and Algorithms. PhD thesis, Stanford University, 2018.Google ScholarGoogle Scholar
  31. A. Asudeh, H. Jagadish, and J. Stoyanovich. Towards responsible data-driven decision making in score-based systems. Data Engineering, 42(3):76--87, 2019.Google ScholarGoogle Scholar
  32. A. Narayanan. How to recognize ai snake oil www.cs.princeton.edu/~arvindn/talks. Technical report, MIT-STS-AI-snakeoil.pdf, 2019.Google ScholarGoogle Scholar
  33. F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems, 33(1):1--33, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and removing disparate impact. In SIGKDD, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney. Optimized pre-processing for discrimination prevention. In NIPS, pages 3992--4001, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. B. Salimi, L. Rodriguez, B. Howe, and D. Suciu. Interventional fairness: Causal database repair for algorithmic fairness. In SIGMOD, pages 793--810, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Z. Jin, M. Xu, C. Sun, A. Asudeh, and H. Jagadish. MithraCoverage: A system for investigating population bias for intersectional fairness. SIGMOD, 2020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Lin, Y. Guan, A. Asudeh, and J. H. V. Identifying insufficient data coverage in databases with multiple relations. PVLDB, 13(11):2229--2242, 2020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. Sun, A. Asudeh, H. Jagadish, B. Howe, and J. Stoyanovich. MithraLabel: Flexible dataset nutritional labels for responsible data science. In CIKM, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice remover regularizer. In ECML PKDD, pages 35--50. Springer, 2012.Google ScholarGoogle Scholar
  41. R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In ICML, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness constraints: Mechanisms for fair classification. CoRR, abs/1507.05259, 2015.Google ScholarGoogle Scholar
  43. A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das. Designing fair ranking schemes. In SIGMOD, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Asudeh and H. Jagadish. Responsible scoring mechanisms through function sampling. CoRR, abs/:1911.10073, 2019.Google ScholarGoogle Scholar
  45. Y. Guan, A. Asudeh, P. Mayuram, H. Jagadish, J. Stoyanovich, G. Miklau, and G. Das. MithraRanking: A system for responsible ranking design. In SIGMOD, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Asudeh, H. Jagadish, Y. Wu, and C. Yu. On detecting cherry-picked trendlines. PVLDB, 13(6):939--952, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 13, Issue 12
    August 2020
    1710 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 August 2020
    Published in pvldb Volume 13, Issue 12

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader