Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2013

Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material

  • Eveline N. Sowa-Söhle , Andreas Schwenke , Philipp Wagener , Andre Weiss , Heinz Wiegel , Csaba Laszlo Sajti , Axel Haverich , Stephan Barcikowski EMAIL logo and Anneke Loos EMAIL logo
From the journal BioNanoMaterials

Abstract

Medical devices made of polymers are often protected against infection-relevant biofilm formation by embedding nanoparticles as a source of bioactive metal ion release. Safe application of such nanocomposites requires finding the optimal ion dose and identifying the cross-effects caused by material mixtures. This study investigated the safety and antimicrobial efficacy of thermoplastic polyurethane (TPU), which is widely used for medical devices, e.g., catheters containing zinc, silver, copper and magnesium nanoparticles, respectively, and combinations thereof. Nanoparticles were generated by using pulsed laser ablation in polymer solution. We found that the composites embedded with nanosilver were noncytotoxic to cells but toxic to bacteria, with an optimal effect at 0.5 wt%. In contrast, zinc, copper, and magnesium nanoparticle composites did not inhibit bacteria growth. Interestingly, by combining the antibacterial metals (Ag, Cu) with nanoparticles made of elements required in biological systems (Zn, Mg), we observed an altered ion release and corresponding changes to their antibacterial efficacy and biocompatibility. The combination of silver with magnesium in the nanocomposites did increase both the amount and rate of silver ion release, and resulted in an increased antimicrobial effect of this Ag-Mg-TPU composite material. The therapeutic window of silver could not be changed quantitatively by the Ag-Mg combination, but less wt% silver was required for achieving antimicrobial efficacy because of faster ion release in the clinically relevant, critical initial phase of immersion. According to our observations, the mechanism of Mg increasing the mass-specific bio-effectivity of silver is possibly nonelectrochemical but volumetric. A fine-tuning of the Mg to Ag ratio and the overall load would be required to test whether a larger therapeutic window compared with Ag composites can be gained by the mixed Mg-Ag nanocomposites. Overall, the addition of Mg to Ag reduces the lag phase of bioactivity by increasing the Ag ion release in the critical first days after application of the medical device.


Corresponding authors: Prof. Dr. Stephan Barcikowski, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Technical Chemistry I, Universitaetsstr. 7, 45141 Essen, Germany, Phone: +49 201 183 3150, Fax: +49 201 183 3049, E-mail: ; and Dr. Anneke Loos, Biocompatibility Laboratory BioMedimplant, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover, Germany, Phone: +49 511 532 8835, Fax: +49 511 532 8836, E-mail:

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the NanoKOMED (FKZ 13N9799) project, the German Research Foundation (DFG), the REBIRTH Cluster of Excellence, and B. Braun Melsungen AG. This work was carried out as part of the Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung, NIFE) in Hannover, a joint transdisciplinary research center of the Hannover Medical School, the Leibniz University Hannover, the University of Veterinary Medicine Hannover, and the Laser Zentrum Hannover e.V. (Laser Center Hannover). The authors also thank Christina Reufsteck (Hannover Medical School) for helpful discussions.

References

1. Wenzel PR, Edmond MB. The impact of hospital-acquired bloodstream infections. Emerg Infec Dis 2001;7:174–7.10.3201/eid0702.010203Search in Google Scholar

2. Graf C, Ott E, Vonberg RP, Kuehn C, Schilling T, Haverich A, et al. Surgical site infections-economic consequences for the health care system. Langenbecks Arch Surg 2011;396:453–9.10.1007/s00423-011-0772-0Search in Google Scholar

3. Kuehn C, Graf K, Heuer W, Hilfiker A, Chaberny IF, Stiesch M, et al. Economic implications of infections of implantable cardiac devices in a single institution. Eur J Cardiothorac Surg 2010;37:875–9.10.1016/j.ejcts.2009.10.018Search in Google Scholar

4. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35:780–9.10.1039/b515219bSearch in Google Scholar

5. Davies J, Wright GD. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 1997;5:234–40.10.1016/S0966-842X(97)01033-0Search in Google Scholar

6. Silver S. Bacterial resistances to toxic metal ions—a review. Gene 1996;179:9–19.10.1016/S0378-1119(96)00323-XSearch in Google Scholar

7. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, et al. Silver(I)imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 2005;127:2285–91.10.1021/ja040226sSearch in Google Scholar PubMed

8. Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, et al. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials 2008;29:963–9.10.1016/j.biomaterials.2007.10.057Search in Google Scholar PubMed

9. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, et al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 2004;32:445–50.10.1016/j.ajic.2004.05.002Search in Google Scholar PubMed

10. Strathmann M, Wingender J. Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage to Staphylococcus aureus cells during colonisation of silver-coated vascular grafts. Int J Antimicrob Agents 2004;24:234–40.10.1016/j.ijantimicag.2003.03.001Search in Google Scholar PubMed

11. Stevens KN, Crespo-Biel O, van den Bosch EE, Dias AA, Knetsch ML, Aldenhoff YB, et al. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 2009;30:3682–90.10.1016/j.biomaterials.2009.03.054Search in Google Scholar PubMed

12. Balazs DJ, Triandafillu K, Wood P, Chevolot Y, van Delben C, Harms H, et al. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 2004;25:2139–51.10.1016/j.biomaterials.2003.08.053Search in Google Scholar PubMed

13. Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, et al. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 2012;403:1179–86.10.1007/s00216-011-5689-5Search in Google Scholar PubMed

14. Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, et al. Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications. Methods Enzymol 2012;509:87–99.10.1016/B978-0-12-391858-1.00005-8Search in Google Scholar PubMed

15. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 2009;75:2973–6.10.1128/AEM.01658-08Search in Google Scholar PubMed PubMed Central

16. Damm C, Münstedt H, Rösch A. The antimicrobial efficacy of polyamide 6/silvernano- and microcomposites. Mater Chem Phys 2008;108:61–6.10.1016/j.matchemphys.2007.09.002Search in Google Scholar

17. Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, et al. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf B Biointerfaces 2013;108:358–65.10.1016/j.colsurfb.2013.03.019Search in Google Scholar PubMed

18. Ohashi S, Saku S, Yamamoto K. Antibacterial activity of silver inorganic agent YDA filler. J Oral Rehabil 2004;31:364–7.10.1111/j.1365-2842.2004.01200.xSearch in Google Scholar PubMed

19. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotech 2005;5:244–9.10.1166/jnn.2005.034Search in Google Scholar PubMed

20. Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composite. Biomaterials 2005;26:2081–8.10.1016/j.biomaterials.2004.05.030Search in Google Scholar PubMed

21. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1–12.10.1016/j.toxlet.2007.10.004Search in Google Scholar PubMed

22. Schwenke A, Wagener P, Weiß A, Klimenta K, Wiegel H, Sajti L, et al. Laserbasierte Generierung matrixbinderfreier Nanopartikel-Polymerkomposite für bioaktive Medizinprodukte. Chemie Ingenieur Technik 2013;85:1–8.10.1002/cite.201200035Search in Google Scholar

23. Breggin L, Falkner R, Jaspers N, Pendergrass J, Porter R. Securing the promise of nanotechnologies: towards transatlantic regulatory cooperation. London, UK: Report, Chatham House, 2009Search in Google Scholar

24. Wagener P, Brandes G, Schwenke A, Barcikowski S. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Phys Chem Chem Phys 2011;13:5120–6.10.1039/c0cp02262dSearch in Google Scholar PubMed

25. Hahn A, Brandes G, Wagener P, Barcikowski S. Metal ion release kinetics from nanoparticle silicone composites. J Control Release 2011a;154:164–70.10.1016/j.jconrel.2011.05.023Search in Google Scholar PubMed

26. Zdrahala RJ, Zdrahala IJ. Present realities, and a vibrant future biomedical applications of polyurethanes: a review of past promises. J Biomater Appl 1999;14:67–89.10.1177/088532829901400104Search in Google Scholar PubMed

27. Hahn A, Günther S, Wagener P, Barcikowski S. Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles. J Mater Chem 2011b;21:10287–9.10.1039/c0jm04480fSearch in Google Scholar

28. Zaporojtchenko V, Podschun R, Schürmann U, Kulkarni A, Faupel F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology 2006;17:4904–8.10.1088/0957-4484/17/19/020Search in Google Scholar

29. Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol 2011;27:333–42.10.1007/s10565-011-9191-9Search in Google Scholar PubMed

30. Seil JT, Webster TJ. Antbacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnology 2011;23:495101.Search in Google Scholar

31. Bartlomiejczyk T, Lankhoff AL, Kruszewski M, Szumiel I. Silver nanoparticles-allies or adversaries? Ann Agric Environ Med 2013;2:48–54.Search in Google Scholar

32. Tie D, Feyerabend F, Müller WD, Schade R, Liefeith K, Kainer KU, et al. Antibacterial biodegradable Mg-Ag alloys. Eur Cell Mater 2013;25:284–98.10.22203/eCM.v025a20Search in Google Scholar

33. DIN EN ISO 10993-5:2009: Biological evaluation of medical devices – Part 5: Test for in vitro cytotoxicity. Beuth Verlag GmbH, Berlin, Germany: Deutsches Institut für Normung e.V.Search in Google Scholar

34. DIN EN ISO 10993-12:2009: Biological evaluation of medical devices – Part 12: Sample preparation and reference materials. Beuth Verlag GmbH, Berlin, Germany: Deutsches Institut für Normung e.V.Search in Google Scholar

35. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mat Sci 2005;16:883–8.10.1007/s10856-005-4422-3Search in Google Scholar PubMed

36. Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 1998;39:331–40.10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-ESearch in Google Scholar

37. Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010;6:1834–42.10.1016/j.actbio.2009.09.024Search in Google Scholar

38. Sternberg K, Gratz M, Koeck K, Mostertz J, Begunk R, Loebler M, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J Biomed Mater Res B Appl Biomater 2012;100:41–50.10.1002/jbm.b.31918Search in Google Scholar

39. Di Virgilio AL, Reigosa M, de Mele MF. Biocompatibility of magnesium particles evaluated by in vitro cytotoxicity and genotoxicity assays. J Biomed Mater Res B Appl Biomater 2011;99B:111–9.10.1002/jbm.b.31877Search in Google Scholar

40. Hess C, Schwenke A, Wagener P, Franzka S, Sajti CL, Pflaum M, et al. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites. J Biomed Mater Res Part A 2013. DOI: 10.1002/jbm.a.34860.10.1002/jbm.a.34860Search in Google Scholar

41. Makridis SS, Gkanas EI, Panagakos G, Kikkinides ES, Stubos AK, Wagener P, et al. Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int J Hydrogen Energ 2013;38:11530–5.10.1016/j.ijhydene.2013.04.031Search in Google Scholar

42. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25:4383–91.10.1016/j.biomaterials.2003.10.078Search in Google Scholar

43. Ghandour W, Hubbard JA, Deistung J, Hughes MN, Poole RK. The uptake of silver ions by Escherichia coli: toxic effects and interactions with copper ions. Appl Microbiol Biotechnol 1988;28:559–65.10.1007/BF00250412Search in Google Scholar

44. Grier N. Silver and its compounds. In: Block SS, editor. Disinfection, sterilization, and prevention. Philadelphia, PA, USA: Lea & Febiger, 1983;395–407.Search in Google Scholar

45. Schreurs WJ, Rosenberg H. Effect of silver ions on transport and retention of phosphate ba Escherichia coli. J Bacteriol 1982;152:7–13.10.1128/jb.152.1.7-13.1982Search in Google Scholar

46. Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 1974;20:883–9.10.1139/m74-135Search in Google Scholar

47. Grade S, Eberhard J, Wagener P, Winkel A, Sajti CL, Barcikowski S, et al. Therapeutic window of ligand-free silver nanoparticles in agar-embedded and colloidal state: in vitro bactericidal effects and cytotoxicity. Adv Eng Mat 2012a;14:B231–7.10.1002/adem.201180016Search in Google Scholar

48. Schierholz JM, Lucas LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. J Hosp Infect 1998;40:257–62.10.1016/S0195-6701(98)90301-2Search in Google Scholar

49. Grade S, Eberhard J, Neumeister A, Wagener P, Winkel A, Stiesch M, et al. Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. RSC Advances 2012b;2:7190–6.10.1039/c2ra20546gSearch in Google Scholar

50. Santo CE, Taudte N, Nies DH, Grass G. Contribution of copper ion resistance to survival of escherichia coli on metallic copper surfaces. Appl Environ Microbiol 2008;74:977–86.10.1128/AEM.01938-07Search in Google Scholar PubMed PubMed Central

51. Lischer S, Körner E, Balazs DJ, Shen D, Wick P, Grieder K, et al. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J R Soc Interface 2011;8:1019–30.10.1098/rsif.2010.0596Search in Google Scholar PubMed PubMed Central

52. Bechert T, Steinruecke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nature Medicine 2000;6:1053–6.10.1038/79568Search in Google Scholar PubMed

Received: 2013-7-12
Accepted: 2013-10-31
Published Online: 2013-12-05
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/bnm-2013-0012/html
Scroll to top button