Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2020

Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects

  • Temitope Olumide Olugbade

    Temitope Olumide Olugbade received BEng and MEng degrees in mechanical engineering from Federal University of Technology Akure, Nigeria in 2011 and 2014, respectively and obtained a PhD degree in mechanical engineering from City University of Hong Kong, Hong Kong SAR, PR China. His main research interests include mechanical and corrosion behavior of nanostructured materials, electrochemistry, stress corrosion cracking, surface nanocrystallization, metallurgy and corrosion properties. Dr. Olugbade has authored and coauthored more than 20 scientific publications and attended local and international conferences. He was the recipient of the prestigious Hong Kong PhD Fellowship Scheme (HKPFS) in 2017.

    ORCID logo EMAIL logo
From the journal Corrosion Reviews

Abstract

Twinning-induced plasticity (TWIP) steels are increasingly receiving wide attention for automotive applications due to their outstanding combination of ductility and strength, which can largely be attributed to the strain hardening effect, formation of mechanical twins during straining, and the presence of manganese (Mn) as an alloying element. However, the premature cracking and sudden failure frequently experienced by the TWIP steels under the combined action of tensile stress and corrosion environment remain a challenge for many material scientists and experts up till now. Driven by this challenge, an overview of the stress corrosion cracking (SCC) susceptibility of high-Mn TWIP steels (under the action of both mechanical loading and corrosion reaction) is presented. The SCC susceptibility of the high-Mn TWIP steels is specifically sensitive to hydrogen embrittlement, which is a major factor influencing the SCC behavior, and is a function of the hydrogen content, lattice-defect density and strength level. Besides, the corrosion susceptibility to hydrogen embrittlement may be reduced by suppressing the martensite in the TWIP steels by carbon additions. This review further discusses in detail the precipitation strengthening mechanisms as well as the corrosion behavior of TWIP steel by mechanism.


Corresponding author: Temitope Olumide Olugbade, Department of Industrial and Production Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria, E-mail: .

About the author

Temitope Olumide Olugbade

Temitope Olumide Olugbade received BEng and MEng degrees in mechanical engineering from Federal University of Technology Akure, Nigeria in 2011 and 2014, respectively and obtained a PhD degree in mechanical engineering from City University of Hong Kong, Hong Kong SAR, PR China. His main research interests include mechanical and corrosion behavior of nanostructured materials, electrochemistry, stress corrosion cracking, surface nanocrystallization, metallurgy and corrosion properties. Dr. Olugbade has authored and coauthored more than 20 scientific publications and attended local and international conferences. He was the recipient of the prestigious Hong Kong PhD Fellowship Scheme (HKPFS) in 2017.

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest.

References

Abioye, T.E., Olugbade, T.O., and Ogedengbe, T.I. (2017). Welding of dissimilar metals using gas metal arc and laser welding techniques: a review. J. Emerg. Trends Eng. Appl. Sci. 8: 225–228.Search in Google Scholar

Abioye, T.E., Omotehinse, I.S., Oladele, I.O., Olugbade, T.O., and Ogedengbe, T.I. (2020). Effects of post-weld heat treatments on the microstructure, mechanical and corrosion properties of gas metal arc welded 304 stainless steel. World J. Eng. 17: 87–96. https://doi.org/10.1108/wje-11-2019-0323.Search in Google Scholar

Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., and Guelton, N. (2004a). Research on the change law and mechanism of mechanical properties of TWIP steel deformed at different temperatures. Mater. Sci. Eng. A 387–389: 306.10.1016/j.msea.2004.01.059Search in Google Scholar

Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., and Guelton, N. (2004b). Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 387–389: 158–162. https://doi.org/10.1016/j.msea.2004.01.059.Search in Google Scholar

Allain, S., Bouaziz, O., and Chateau, J.P. (2010). Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature. Scr. Mater. 62: 500–503. https://doi.org/10.1016/j.scriptamat.2009.12.026.Search in Google Scholar

Altstetter, C.J., Bentley, A.P., Fourie, J.W., and Kirkbride, A.N. (1986). Processing and properties of FeMnAl alloys. Mater. Sci. Eng. 82: 13–25. https://doi.org/10.1016/0025-5416(86)90091-1.Search in Google Scholar

Atasoy, O.A., Ozbaysal, K., and Inal, O.T. (1989). Precipitation of vanadium carbides in 0.8% C-13% Mn-1% V austenitic steel. J. Mat. Sci. 24: 01393. https://doi.org/10.1007/BF02397078.Search in Google Scholar

Atasoy, O.A. (1984). Effect of alloying elements and heat treatment on the structure and properties of Hadfield’s austenitic manganese steel. Z. Metallkd. 75: 463.Search in Google Scholar

Bai, Y., Momotani, Y., Chen, M.C., Shibata, A., and Tsuji, N. (2016). Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Mater. Sci. Eng. A 651: 935–944. https://doi.org/10.1016/j.msea.2015.11.017.Search in Google Scholar

Barbier, D., Gey, N., Allain, S., Bozzolo, N., and Humbert, M. (2009). Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions. Mater. Sci. Eng. A 500: 196–206. https://doi.org/10.1016/j.msea.2008.09.031.Search in Google Scholar

Barnoush, A. and Vehoff, H. (2010). Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation. Acta Mater. 58: 5274–5285. https://doi.org/10.1016/j.actamat.2010.05.057.Search in Google Scholar

Bartlett, L. and Van Aken, D. (2014). High manganese and aluminum steels for the military and transportation industry. JOM 66: 1770–1784. https://doi.org/10.1007/s11837-014-1068-y.Search in Google Scholar

Bartlett, L.N., Van Aken, D.C., Medvedeva, J., Isheim, D., Medvedeva, N.I., and Song, K. (2014). An atom probe study of kappa carbide precipitation and the effect of silicon addition. Metall. Mater. Trans. A 45: 2421–2435. https://doi.org/10.1007/s11661-014-2187-3.Search in Google Scholar

Bouaziz, O., Allain, S., and Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr. Mater. 58: 484–487. https://doi.org/10.1016/j.scriptamat.2007.10.050.Search in Google Scholar

Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., and Barbier, D. (2011a). High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15: 141. https://doi.org/10.1016/j.cossms.2011.04.002.Search in Google Scholar

Bouaziz, O., Zurob, H., Chehab, B., Embury, J.D., Allain, S., and Huang, M. (2011b). Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels. Mater. Sci. Technol. 27: 707–709. https://doi.org/10.1179/026708309x12535382371852.Search in Google Scholar

Bouaziz, O., Zurob, H., and Huang, M. (2013). Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 84: 937–947. https://doi.org/10.1002/srin.201200288.Search in Google Scholar

Bouaziz, O. (2012). Strain-hardening of twinning-induced plasticity steels. Scr. Mater. 66: 982–985. https://doi.org/10.1016/j.scriptamat.2011.11.029.Search in Google Scholar

Bracke, L., Kestens, L., and Penning, J. (2009). Direct observation of the twinning mechanism in an austenitic Fe–Mn–C steel. Scr. Mater. 61: 220–222. https://doi.org/10.1016/j.scriptamat.2009.03.045.Search in Google Scholar

Chang, S.C., Liu, J.Y., and Juang, H.K. (1995). Environment-assisted cracking of Fe-32% Mn-9% Al alloys in 3.5% sodium chloride solution. Corrosion 51: 399–406, https://doi.org/10.5006/1.3293605.Search in Google Scholar

Chen, P.C., Chao, C.G., and Liu, T.F. (2013). A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy. Scr. Mater. 68: 380–383. https://doi.org/10.1016/j.scriptamat.2012.10.034.Search in Google Scholar

Chen, S., Rana, R., Haldar, A., and Ray, R.K. (2017). Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci. 89: 345–391. https://doi.org/10.1016/j.pmatsci.2017.05.002.Search in Google Scholar

Cheng, W.C., Song, Y.S., Lin, Y.S., Chen, K.F., and Pistorius, P.C. (2014). On the eutectoid reaction in a quaternary Fe-C-Mn-Al alloy: austenite → ferrite + kappa-carbide + M23C6 carbide. Metall. Mater. Trans. A 45A: 1199–1216. https://doi.org/10.1007/s11661-013-2083-2.Search in Google Scholar

Cheng, W.C., Cheng, C.Y., Hsu, C.W., and Laughlin, D.E. (2015). Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Mater. Sci. Eng. A 642: 128–135. https://doi.org/10.1016/j.msea.2015.06.096.Search in Google Scholar

Chin, K.G., Kang, C.Y., Shin, S.Y., Hong, S., Lee, S., Kim, H.S., Kim, K.H., and Kim, N.J. (2011). Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater. Sci. Eng. A 528: 2922–2928. https://doi.org/10.1016/j.msea.2010.12.085.Search in Google Scholar

Choi, C., Tan, P., Ruan, D., and Dixon, B. (2017). A new concept of universal substitutive explosive welding. Mater. Des. 115: 393–403. https://doi.org/10.1016/j.matdes.2016.11.053.Search in Google Scholar

Choi, W.S., Sandlöbes, S., Malyar, N.V., Kirchlechner, C., Korte-Kerzel, S., Dehm, G., Choi, P.P., and Raabe, D. (2018). On the nature of twin boundary-associated strengthening in Fe-Mn-C steel. Scr. Mater. 156: 27–31. https://doi.org/10.1016/j.scriptamat.2018.07.009.Search in Google Scholar

Chuanyu, C., Hao, D., Housheng, L., and Tianying, X. (2020). Corrosion behavior of the electroless Ni-P coating on the pore walls of the lotus-type porous copper. Corros. Sci. 162: 108202. https://doi.org/10.1016/j.corsci.2019.108202.Search in Google Scholar

Chun, Y.S., Lee, J., Bae, C.M., Park, K.T., and Lee, C.S. (2012a). Caliber-rolled TWIP steel for high-strength wire rods with enhanced hydrogen-delayed fracture resistance. Scr. Mater. 67: 681. https://doi.org/10.1016/j.scriptamat.2012.07.006.Search in Google Scholar

Chun, Y.S., Park, K.T., and Lee, C.S. (2012b). Delayed static failure of twinning-induced plasticity steels. Scr. Mater. 66: 960–965. https://doi.org/10.1016/j.scriptamat.2012.02.038.Search in Google Scholar

Cornette, D., Cugy, P., Hildenbrand, A., Bouzekri, M., and Lovato, G. (2005). Ultra high strength Fe-Mn TWIP steels for automotive safety parts. Rev. Metall. 12: 905–918. https://doi.org/10.1051/metal:2005151.10.1051/metal:2005151Search in Google Scholar

Curtze, S. and Kuokkala, V.T. (2010a). Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 58: 5129–5141. https://doi.org/10.1016/j.actamat.2010.05.049.Search in Google Scholar

Curtze, S. and Kuokkala, V.T. (2010b). Effects of temperature and strain rate on the tensile properties of twip steels. Matéria (Rio J.) 15: 2. https://doi.org/10.1590/s1517-70762010000200011.Search in Google Scholar

Dang, C., Yao, Y., Olugbade, T.O., Li, J., and Wang, L. (2018a). Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating. Thin Solid Films 653: 107–112. https://doi.org/10.1016/j.tsf.2018.03.029.Search in Google Scholar

Dang, C., Olugbade, T.O., Zhang, H., Gao, L.L., Li, J., and Lu, Y. (2018b). Direct quantification of mechanical responses of TiSiN/Ag multilayer coatings through uniaxial compression of micropillars. Vacuum 156: 310–316. https://doi.org/10.1016/j.vacuum.2018.07.048.Search in Google Scholar

De Assis, K.S., Schuabb, C.G.C., Lage, M.A., Gonçalves, M.P.P., Dias, D.P., and Mattos, O.R. (2019). Slow strain rate tests coupled with hydrogen permeation: new possibilities to assess the role of hydrogen in stress corrosion cracking tests part I: methodology and commissioning results. Corros. Sci. 152: 45–53. https://doi.org/10.1016/j.corsci.2019.02.028.Search in Google Scholar

De Cooman, B.C., Chin, K.G., and Kim, J. (2011). High Mn TWIP steels for automotive applications. In: Chiaberge, M. (Ed.). New trends and developments in automotive systems engineering, In Tech Europe, Rijeka, Croatia, pp. 101–128.10.5772/14086Search in Google Scholar

De Cooman, B.C., Kwon, O., and Chin, K.G. (2012). State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 28: 513–527. https://doi.org/10.1179/1743284711y.0000000095.Search in Google Scholar

Dini, G. and Ueji, R. (2012). Effect of grain size and grain orientation on dislocations structure in tensile strained TWIP steel during initial stages of deformation. Steel Res. Int. 83: 374–378. https://doi.org/10.1002/srin.201100308.Search in Google Scholar

Dumay, A., Chateau, J.P., Allain, S., Migot, S., and Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater. Sci. Eng. A 483–484: 184–187. https://doi.org/10.1016/j.msea.2006.12.170.Search in Google Scholar

El-Faramawy, H (2005). Effect of titanium and vanadium additions on the high manganese (Hadfield) steel containing nitrogen. Steel Grips 3: 360.Search in Google Scholar

Enos, D.G. and Scully, J.R. (2002). A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel. Metall. Mater. Trans. A 33: 1151–1156. https://doi.org/10.1007/s11661-002-0217-z.Search in Google Scholar

Fajardo, S., Llorente, I., Jiménez, J.A., BastSidas, J.M., and Bastidas, D.M. (2019). Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corros. Sci. 154: 246–253. https://doi.org/10.1016/j.corsci.2019.04.026.Search in Google Scholar

Frommeyer, G., Drewes, E.J., and Engl, B. (2002). Physical and mechanical properties of iron-aluminium- (Mn, Si) lightweight steels. Rev. Métall. 97: 1245–1253. https://doi.org/10.1051/metal:2000110.10.1051/metal:2000110Search in Google Scholar

Frommeyer, G., Brüx, U., and Neumann, P. (2003). Supra-ductile and high strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 43: 438–446. https://doi.org/10.2355/isijinternational.43.438.Search in Google Scholar

Fu, H., Wang, W., Chen, X., Pia, G., and Li, J. (2019). Fractal and multifractal analysis of fracture surfaces caused by hydrogen embrittlement in high-Mn twinning/transformation-induced plasticity steels. Appl. Surf. Sci. 470: 870–881. https://doi.org/10.1016/j.apsusc.2018.11.179.Search in Google Scholar

Fu, H., Wang, W., Chen, X., Pia, G., and Li, J. (2020a). Grain boundary design based on fractal theory to improve intergranular corrosion resistance of TWIP steels. Mater. Des. 185: 108253. https://doi.org/10.1016/j.matdes.2019.108253.Search in Google Scholar

Fu, H., Wang, W., Zhao, H., Jin, F., and Li, J. (2020b). Study of hydrogen-induced delayed fracture in high-Mn TWIP/TRIP steels during in situ electrochemical hydrogen-charging: role of microstructure and strain rate in crack initiation and propagation. Corros. Sci. 162: 108191. https://doi.org/10.1016/j.corsci.2019.108191.Search in Google Scholar

Furuhara, T., Shinyoshi, T., Miyamoto, G., Yamaguchi, J., Sugita, N., Kimura, N., Takemura, N., and Maki, T. (2003). Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C, N) complex precipitate in austenite. ISIJ Int. 43: 2028. https://doi.org/10.2355/isijinternational.43.2028.Search in Google Scholar

Goretskii, G. and Gorev, K. (1990). Phase equilibria in the Fe–Mn–Al–C alloys. Izv. Akad. Nauk SSSR. Met. 2: 218–222.Search in Google Scholar

Grässel, O., Krüger, L., Frommeyer, G., and Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 16: 1391–1409. https://doi.org/10.1016/s0749-6419(00)00015-2.Search in Google Scholar

Guo, Z., Furuhara, T., and Maki, T. (2001). The influence of (MnS+VC) complex precipitate on the crystallography of intergranular pearlite transformation in Fe–Mn–C hypereutectoid alloys. Scr. Mater. 45: 525–532. https://doi.org/10.1016/s1359-6462(01)01053-3.Search in Google Scholar

Guo, Z., Kimura, N., Tagashira, S., Furuhara, T., and Maki, T. (2002). Kinetics and crystallography of intragranular pearlite transformation nucleated at (MnS+VC) complex precipitates in hypereutectoid Fe-Mn-C alloys. ISIJ Int. 42: 1033. https://doi.org/10.2355/isijinternational.42.1033.Search in Google Scholar

Gutierrez-Urrutia, I., del Valle, J.A., Zaefferer, S., and Raabe, D. (2010). Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests. J. Mater. Sci. 45: 6604–6610. https://doi.org/10.1007/s10853-010-4750-7.Search in Google Scholar

Gutierrez-Urrutia, I. and Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.% Mn–0.6wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 59: 6449–6462. https://doi.org/10.1016/j.actamat.2011.07.009.Search in Google Scholar

Gutierrez-Urrutia, I. and Raabe, D. (2012a). Grain size effect on strain hardening in twinning-induced plasticity steels. Scr. Mater. 66: 992–996. https://doi.org/10.1016/j.scriptamat.2012.01.037.Search in Google Scholar

Gutierrez-Urrutia, I. and Raabe, D. (2012b). Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater. 60: 5791–5802. https://doi.org/10.1016/j.actamat.2012.07.018.Search in Google Scholar

Haley, D., Merzlikin, S.V., Choi, P., and Raabe, D. (2014). Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int. J. Hydrog. Energy 39: 12221–12229. https://doi.org/10.1016/j.ijhydene.2014.05.169.Search in Google Scholar

Hamada, A.S. and Karjalainen, L.P. (2008). Nitric acid resistance of new type Fe-Mn-Al stainless steels. Can. Metall. Q. 45: 41–48. https://doi.org/10.1179/cmq.2006.45.1.41.Search in Google Scholar

Hamada, A.S. and Karjalainen, L.P. (2010). Corrosion behaviour of high-Mn TWIP steels with electroless Ni-P coating. Open Corros. J. 3: 1–6. https://doi.org/10.2174/1876503301003010001.Search in Google Scholar

Hamada, A.S., Karjalainen, L.P., Somani, M.C., and Ramadan, R. (2007). Deformation mechanisms in high-Al bearing high-Mn TWIP steels in hot compression and in tension at low temperatures. Mater. Sci. Forum 550: 217–222. https://doi.org/10.4028/www.scientific.net/msf.550.217.Search in Google Scholar

Han, D.K., Kim, Y.M., Han, H.N., Bhadeshia, H.K.D.H., and Suh, D.W. (2014). Hydrogen and aluminium in high-manganese twinning-induced plasticity steel. Scr. Mater. 80(Suppl. C): 9–12. https://doi.org/10.1016/j.scriptamat.2014.01.039.Search in Google Scholar

Han, D.K., Lee, S.K., Noh, S.J., Kim, S.K., and Suh, D.W. (2015). Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel. Scr. Mater. 99: 45–48. https://doi.org/10.1016/j.scriptamat.2014.11.023.Search in Google Scholar

Han, K.H. (2000). The microstructures and mechanical properties of an austenitic Nb-bearing Fe–Mn–Al–C alloy processed by controlled rolling. Mater. Sci. Eng. A 279: 1–9. https://doi.org/10.1016/s0921-5093(99)00690-5.Search in Google Scholar

Hansoo, K., Dong-Woo, S., and Nack, J.K. (2013). Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 14: 014205. https://doi.org/10.1088/1468-6996/14/1/014205.Search in Google Scholar PubMed PubMed Central

Harris, S.J. and Nag, N.R. (1976). Effect of warm working on the precipitation of vanadium carbide in a medium carbon austenitic steel. J. Mater. Sci. 11: 1320–1329. https://doi.org/10.1007/bf00545153.Search in Google Scholar

He, B.B., Luo, H.W., and Huang, M.X. (2016). Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int. J. Plast. 78: 173–186. https://doi.org/10.1016/j.ijplas.2015.11.004.Search in Google Scholar

He, X., Yan, Z., Liang, H., and Wei, Y. (2017). Study on corrosion and stress corrosion cracking behaviors of AZ31 alloy in sodium sulfate solution. J. Mater. Eng. Perform. 26: 2226–2236. https://doi.org/10.1007/s11665-017-2644-4.Search in Google Scholar

Huang, M.X., Liang, Z.Y., and Luo, Z.C. (2015). Critical assessment 15: science of deformation and failure mechanisms in twinning induced plasticity steels. Mater. Sci. Technol. 31: 1265–1270. https://doi.org/10.1179/1743284715y.0000000095.Search in Google Scholar

Hwang, J.K. (2018a). Effect of copper and aluminum contents on wire drawing behavior in twinning-induced plasticity steels. Mater. Sci. Eng. A 737: 188–197. https://doi.org/10.1016/j.msea.2018.09.049.Search in Google Scholar

Hwang, J.K. (2018b). Effects of caliber rolling on microstructure and mechanical properties in twinning-induced plasticity (TWIP) steel. Mater. Sci. Eng. A 711: 156–164. https://doi.org/10.1016/j.msea.2017.11.031.Search in Google Scholar

Hwang, J.K. (2019). Drawing direction effect on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing. J. Mater. Eng. Perform. 28: 2834–2844. https://doi.org/10.1007/s11665-019-04020-3.Search in Google Scholar

Hwang, J.K. (2020). Effect of grain size on tensile and wire drawing behaviors in twinning-induced plasticity steel. Mater. Sci. Eng. A 772: 138709. https://doi.org/10.1016/j.msea.2019.138709.Search in Google Scholar

Idrissi, H., Renard, K., Ryelandt, L., Schryvers, D., and Jacques, P.J. (2010). On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Mater. 58: 2464–2476. https://doi.org/10.1016/j.actamat.2009.12.032.Search in Google Scholar

International Iron & Steel Institute (2006). Advanced high strength steel (AHSS) application guidelines – version 3. International Iron & Steel Institute, Available at: <http://worldautosteel.org>.Search in Google Scholar

Ishida, K., Ohtani, H., Satoh, N., Kainuma, R., and Nishizawa, T. (1990). Phase equilibria in Fe-Mn-Al-C alloys. ISIJ Int. 30: 680–686. https://doi.org/10.2355/isijinternational.30.680.Search in Google Scholar

Jabłońska, M., and Michalik, R. (2014). Studies on the corrosion properties of high-Mn austenitic steels. Solid State Phenom. 227: 75–78, https://doi.org/10.4028/www.scientific.net/SSP.227.75.Search in Google Scholar

Jabłońska, M., Niewielski, G., and Kawalla, R. (2014). High manganese TWIP steel – technological plasticity and selected properties. Solid State Phenom. 212: 87–90. https://doi.org/10.4028/www.scientific.net/SSP.212.87.Search in Google Scholar

Jimenez, J.A. and Frommeyer, G. (2010). Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel. Mater. Charact. 61: 221–226. https://doi.org/10.1016/j.matchar.2009.11.013.Search in Google Scholar

Jung, I.C. and De Cooman, B.C. (2013). Temperature dependence of the flow stress of Fe–18Mn–0.6C–xAl twinning-induced plasticity steel. Acta Mater. 61: 6724–6735. https://doi.org/10.1016/j.actamat.2013.07.042.Search in Google Scholar

Kajiwara, S., Liu, D., Kikuchi, T., and Shinya, N. (2001). Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates. Scr. Mater. 44: 2809–2814. https://doi.org/10.1016/s1359-6462(01)00978-2.Search in Google Scholar

Kalsar, R. and Suwas, S. (2018). A novel way to enhance the strength of twinning induced plasticity (TWIP) steels. Scr. Mater. 154: 207–211. https://doi.org/10.1016/j.scriptamat.2018.05.045.Search in Google Scholar

Kang, S., Jung, J., Kang, M., Woo, W., and Lee, Y. (2016). The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning-induced plasticity steel. Mater. Sci. Eng. A 652: 212–220. https://doi.org/10.1016/j.msea.2015.11.096.Search in Google Scholar

Kannan, M.B., Raman, R.K.S., Khoddam, S., and Liyanaarachchi, S. (2008). Comparative studies on the corrosion properties of a Fe-Mn-Al-Si steel and an interstitial-free steel. Corros. Sci. 50: 2879–2884. https://doi.org/10.1016/j.corsci.2008.07.024.Search in Google Scholar

Kannan, M.B., Raman, R.K., Khoddam, S., and Liyanaarachchi, S. (2013). Corrosion behavior of twinning-induced plasticity (TWIP) steel. Mater. Corros. 64: 231–235. https://doi.org/10.1002/maco.201106356.Search in Google Scholar

Kim, J., Lee, S.J., and de Cooman, B.C. (2011). Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity. Scr. Mater. 65: 363–366. https://doi.org/10.1016/j.scriptamat.2011.05.014.Search in Google Scholar

Koyama, M., Akiyama, E., and Tsuzaki, K. (2012a). Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros. Sci. 54: 1–4. https://doi.org/10.1016/j.corsci.2011.09.022.Search in Google Scholar

Koyama, M., Akiyama, E., Sawaguchi, T., Raabe, D., and Tsuzaki, K. (2012b). Hydrogen induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scr. Mater. 66: 459–462. https://doi.org/10.1016/j.scriptamat.2011.12.015.Search in Google Scholar

Koyama, M., Akiyama, E., and Tsuzaki, K. (2013a). Effects of static and dynamic strain aging on hydrogen embrittlement in TWIP steels containing Al. ISIJ Int. 53: 1268–1274. https://doi.org/10.2355/isijinternational.53.1268.Search in Google Scholar

Koyama, M., Akiyama, E., Tsuzaki, K., and Raabe, D. (2013b). Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater. 61: 4607–4618. https://doi.org/10.1016/j.actamat.2013.04.030.Search in Google Scholar

Koyama, M., Springer, H., Merzlikin, S.V., Tsuzaki, K., Akiyama, E., and Raabe, D. (2014). Hydrogen embrittlement associated with strain localization in a precipitation hardened Fe–Mn–Al–C light weight austenitic steel. Int. J. Hydrog. Energy 39: 4634–4646. https://doi.org/10.1016/j.ijhydene.2013.12.171.Search in Google Scholar

Koyama, M., Bashir, A., Rohwerder, M., Merzlikin, S.V., Akiyama, E., Tsuzaki, K., and Raabe, D. (2015). Spatially and kinetically resolved mapping of hydrogen in a twinning induced plasticity steel by use of scanning Kelvin probe force microscopy. J. Electrochem. Soc. 162: C638–C647. https://doi.org/10.1149/2.0131512jes.Search in Google Scholar

Koyama, M., Akiyama, E., Lee, Y.K., Raabe, D., and Tsuzaki, K. (2017). Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrog. Energy 42: 12706–12723. https://doi.org/10.1016/j.ijhydene.2017.02.214.Search in Google Scholar

Krüger, L., Meyer, L.W., Brüx, U., Frommeyer, G., and Grässel, O. (2003). Stress-deformation behaviour of high manganese (Al, Si) TRIP and TWIP steels. J. Phys. IV 110: 189–194. https://doi.org/10.1051/jp4:20020692.10.1051/jp4:20020692Search in Google Scholar

Kubo, H., Nakamura, K., Farjami, S., and Maruyama, T. (2004). Characterization of Fe–Mn–Si–Cr shape memory alloys containing VN precipitates. Mater. Sci. Eng. A 378: 343. https://doi.org/10.1016/j.msea.2003.10.359.Search in Google Scholar

Kwon, Y.J., Seo, H.J., Kim, J.N., and Lee, C.S. (2018). Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates. Corros. Sci. 142: 213–221. https://doi.org/10.1016/j.corsci.2018.07.028.Search in Google Scholar

Lee, Y.K. and Choi, C. (2000). Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall. Mater. Trans. A 31: 355. https://doi.org/10.1007/s11661-000-0271-3.Search in Google Scholar

Lee, S., Kim, J., Lee, S.J., and de Cooman, B.C. (2011a). Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scr. Mater. 65: 528–531. https://doi.org/10.1016/j.scriptamat.2011.06.017.Search in Google Scholar

Lee, S.J., Kim, J., Kane, S.N., and De Cooman, B.C. (2011b). On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 59: 6809–6819. https://doi.org/10.1016/j.actamat.2011.07.040.Search in Google Scholar

Lee, S., Lee, C.Y., and Lee, Y.K. (2015). Schaeffler diagram for high Mn steels. J. Alloys Compd. 628: 46–49. https://doi.org/10.1016/j.jallcom.2014.12.134.Search in Google Scholar

Lee, S.M., Lee, S.J., Lee, S., Nam, J.H., and Lee, Y.K. (2018). Tensile properties and deformation mode of Si-added Fe-18Mn-0.6C steels. Acta Mater. 144: 738–747. https://doi.org/10.1016/j.actamat.2017.11.023.Search in Google Scholar

Lee, S.I., Lee, S.Y., Han, J., and Hwang, B. (2019). Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5C high-manganese steel: effect of grain size. Mater. Sci. Eng. A 742: 334–343. https://doi.org/10.1016/j.msea.2018.10.107.Search in Google Scholar

Lee, Y.K. (2012). Microstructural evolution during plastic deformation of twinning- induced plasticity steels. Scr. Mater. 66: 1002–1006. https://doi.org/10.1016/j.scriptamat.2011.12.016.Search in Google Scholar

Li, X., Chen, L., Zhao, Y., Yuan, X., and Misra, R.D.K. (2018). Influence of original austenite grain size on tensile properties of a high manganese transformation-induced plasticity (TRIP) steel. Mater. Sci. Eng. A 715: 257–265. https://doi.org/10.1016/j.msea.2017.12.107.Search in Google Scholar

Liang, Z.Y., Li, Y.Z., and Huang, M.X. (2016). The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scr. Mater. 112: 28–31. https://doi.org/10.1016/j.scriptamat.2015.09.003.Search in Google Scholar

Liang, Z.Y., Luo, Z.C., and Huang, M.X. (2019). Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel. Int. J. Plast. 116: 192–202. https://doi.org/10.1016/j.ijplas.2019.01.003.Search in Google Scholar

Lins, V.F.C., Freitas, M.A., and Silva, E.M.P. (2005). Corrosion resistance study of Fe-Mn-Al-C alloys using immersion and potentiostatic tests. Appl. Surf. Sci. 250: 124–134. https://doi.org/10.1016/j.apsusc.2004.12.040.Search in Google Scholar

Liu, Q., Zhou, Q., Venezuela, J., Zhang, M., Wang, J., and Atrens, A. (2016). A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros. Rev. 34: 127. https://doi.org/10.1515/corrrev-2015-0083.Search in Google Scholar

Liu, M., Li, Y., Cui, Z., and Yang, Q. (2019). High ductility of spray formed low density TRIP steel with the improvement of δ-ferrite matrix. Mater. Charact. 156: 109828. https://doi.org/10.1016/j.matchar.2019.109828.Search in Google Scholar

Luo, Z.C. and Huang, M.X. (2018). Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scr. Mater. 142: 28–31. https://doi.org/10.1016/j.scriptamat.2017.08.017.Search in Google Scholar

Ma, P., Qian, L., Meng, J., Liu, S., and Zhang, F. (2015). Influence of Al on the fatigue crack growth behavior of Fe-22Mn-(3Al)-0.6C TWIP steels. Mater. Sci. Eng. A 645: 136–141. https://doi.org/10.1016/j.msea.2015.08.017.Search in Google Scholar

Májlinger, K., Kaĺacska, E., and RussoSpena, P. (2016). Gas metal arc welding of dissimilar AHSS sheets. Mater. Des. 109: 615–621. https://doi.org/10.1016/j.matdes.2016.07.084.Search in Google Scholar

Masumoto, H., Yoshimura, H., Akasawa, T., Ohba, S., Harada, T., Suemune, K., Inoue, T., Ogawa, T., and Hida, Y. (1983). Nippon Steel Technical Report 22: 47.Search in Google Scholar

Matveev, G., Bukhtin, V.S., and Tarasko, D.I. (1975). Metallovedenie I Ter-micheskaya Obrabotka Metallov 3: 51.Search in Google Scholar

Mohammadi, A., Koyama, M., Gerstein, G., Maier, H.J., and Noguchi, H. (2018). Hydrogen-assisted failure in a bimodal twinning-induced plasticity steel: delamination events and damage evolution. Int. J. Hydrog. Energy 43: 2492–2502. https://doi.org/10.1016/j.ijhydene.2017.11.177.Search in Google Scholar

Mohammadzadeh, R. and Mohammadzadeh, M. (2019). Inverse grain size effect on twinning in nanocrystalline TWIP steel. Mater. Sci. Eng. A 747: 265–275. https://doi.org/10.1016/j.msea.2018.11.085.Search in Google Scholar

Mohammed, T., Olugbade, T.O., and Nwankwo, I. (2016). Determination of the effect of oil exploration on galvanized steel in Niger Delta, Nigeria. J. Sci. Res. Rep. 10: 1–9. https://doi.org/10.9734/jsrr/2016/21053.Search in Google Scholar

Moon, J., Park, S.J., Jang, J.H., Lee, T.H., Lee, C.H., Hong, H.U., Suh, D.W., Kim, S.H., Han, H.N., and Lee, B.H. (2017). Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition. Scr. Mater. 127: 97–101. https://doi.org/10.1016/j.scriptamat.2016.08.036.Search in Google Scholar

Moon, K.M., Kim, D.A., Kim, Y.H., and Lee, M.H. (2018). Effect of Mn content on corrosion characteristics of lean Mn TWIP steel. Int. J. Mod. Phys. B 32: 1–6. https://doi.org/10.1142/s0217979218400830.Search in Google Scholar

Oha, B.W., Cho, S.J., Kim, Y.G., Kim, Y.P., Kim, W.S., and Hong, S.H. (1995). Effect of aluminium on deformation mode and mechanical properties of austenitic Fe-Mn-Cr-A1-C alloys. Mater. Sci. Eng. A 197: 147. https://doi.org/10.1016/0921-5093(94)09751-8.Search in Google Scholar

Olugbade, T. and Lu, J. (2018). Effects of materials modification on the mechanical and corrosion properties of AISI 316 stainless steel. Twelfth international conference on fatigue damage of structural materials. Cape Cod, Hyannis, USA.Search in Google Scholar

Olugbade, T. and Lu, J. (2019a). Enhanced corrosion properties of nanostructured 316 stainless steel in 0.6 M NaCl solution. J. Bio Tribo Corros. 5: 38. https://doi.org/10.1007/s40735-019-0235-7.Search in Google Scholar

Olugbade, T.O. and Lu, J. (2019b). Characterization of the corrosion of nanostructured 17-4 PH stainless steel by surface mechanical attrition treatment (SMAT). Anal. Lett. 52: 2454–2471. https://doi.org/10.1080/00032719.2019.1611842.Search in Google Scholar

Olugbade, T.O. and Lu, J. (2020a). Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater. Sci. 2: 3–31. https://doi.org/10.1016/j.nanoms.2020.04.002.Search in Google Scholar

Olugbade, T., and Lu, J. (2020b). Improving the passivity and corrosion behaviour of mechanically surface-treated 301 stainless steel. International conference on nanostructured materials (NANO 2020). Engineers, Melbourne, Australia, p. 117.Search in Google Scholar

Olugbade, T., Liu, C., and Lu, J. (2019). Enhanced passivation layer by Cr diffusion of 301 stainless steel facilitated by SMAT. Adv. Eng. Mater. 21: 1900125. https://doi.org/10.1002/adem.201900125.Search in Google Scholar

Olugbade, T.O., Abioye, T.E., Farayibi, P.K., Olaiya, N.G., Omiyale, B.O., and Ogedengbe, T.I. (2020). Electrochemical properties of MgZnCa thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate. Anal. Lett., https://doi.org/10.1080/00032719.2020.1815757.Search in Google Scholar

Olugbade, T. (2019). Datasets on the corrosion behaviour of nanostructured AISI 316 stainless steel treated by SMAT. Data Brief 25: 104033. https://doi.org/10.1016/j.dib.2019.104033.Search in Google Scholar PubMed PubMed Central

Olugbade, T.O. (2020). Electrochemical characterization of the corrosion of mild steel in saline following mechanical deformation. Analytical Letters, https://doi.org/10.1080/00032719.2020.1793994 (Epub ahead of print).Search in Google Scholar

Park, I.J., Jeong, K.H., Jung, J.G., Lee, C.S., and Lee, Y.K. (2012). The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fee18Mne0.6C twinning induced plasticity steels. Int. J. Hydrog. Energy 37: 9925–9932. https://doi.org/10.1016/j.ijhydene.2012.03.100.Search in Google Scholar

Park, I.J., Jo, S.Y., Kang, M., Lee, S.M., and Lee, Y.K. (2014). The effect of Ti precipitates on hydrogen embrittlement of Fe–18Mn–0.6C–2Al–xTi twinning-induced plasticity steel. Corros. Sci. 89(Suppl. C): 38–45. https://doi.org/10.1016/j.corsci.2014.08.005.Search in Google Scholar

Park, I.J., Lee, S.M., Jeon, H.H., and Lee, Y.K. (2015). The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. Corros. Sci. 93(Suppl. C): 63–69. https://doi.org/10.1016/j.corsci.2015.01.012.Search in Google Scholar

Qu, W., Li, S., Chen, Z., Li, C., Pei, Y., and Gong, S. (2020). Hot corrosion behavior and wettability of calcium–magnesium–alumina–silicate (CMAS) on LaTi2Al9O19 ceramic. Corros. Sci. 162: 108199. https://doi.org/10.1016/j.corsci.2019.108199.Search in Google Scholar

Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.B., Koyama, M., Choi, P.P., and Tsuzaki, K. (2014). Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe-Mn-Al-C austenitic steels. JOM 66: 1845–1856. https://doi.org/10.1007/s11837-014-1032-x.Search in Google Scholar

Rahman, K.M., Vorontsov, V.A., and Dye, D. (2015). The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 89: 247–257. https://doi.org/10.1016/j.actamat.2015.02.008.Search in Google Scholar

Raman, R.K.S., Khalissi, M., and Khoddam, S. (2012). Twinning-assisted environmental cracking: a new cracking mechanism for the crash-resistant novel TWIP steels. Scr. Mater. 67: 943. https://doi.org/10.1016/j.scriptamat.2012.08.022.Search in Google Scholar

Raman, R.K.S., Khalissi, M., and Khoddam, S. (2014). Environment-assisted cracking of twinning induced plasticity (TWIP) steel: role of pH and twinning. Metall. Mater. Trans. A 45: 1979. https://doi.org/10.1007/s11661-013-2142-8.Search in Google Scholar

Rana, R., Lahaye, C., and Ray, R.K. (2014). Overview of lightweight ferrous materials: strategies and promises. JOM 66: 1734–1746. https://doi.org/10.1007/s11837-014-1126-5.Search in Google Scholar

Rana, R. (2014). Low-density steels. JOM 66: 1730–1733. https://doi.org/10.1007/s11837-014-1137-2.Search in Google Scholar

Reyes-Calderon, F., Mejia, I., and Cabrera, J.M. (2013). Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5Al-1.5Si-0.4C TWIP steels microalloyed with Nb, V, and Ti. Mater. Sci. Eng. A 562: 46–52. https://doi.org/10.1016/j.msea.2012.10.091.Search in Google Scholar

Ronevich, J.A., Kim, S.K., Speer, J.G., and Matlock, D.K. (2012). Hydrogen effects on cathodically charged twinning-induced plasticity steel. Scr. Mater. 66: 956–959. https://doi.org/10.1016/j.scriptamat.2011.12.012.Search in Google Scholar

Ryu, J.H., Kim, S.K., Lee, C.S., Suh, D.W., and Bhadeshia, H.K.D.H. (2012). Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel. Proc. R. Soc. A Math. Phys. Eng. Sci. 469: 2149.10.1098/rspa.2012.0458Search in Google Scholar

Sagaradze, V.V., Kositsyna, I.L., Mukhin, M.L., Belozerov, Y.V., and Zaynutdinov, Y.R. (2008). High-strength precipitation-hardening austenitic Fe–Mn–V–Mo–C steels with shape memory effect. Mater. Sci. Eng. A 481: 747. https://doi.org/10.1016/j.msea.2007.02.158.Search in Google Scholar

Santos, D.B., Saleh, A.A., Gazder, A.A., Carman, A., Duarte, D.M., Ribeiro, E.A.S., Gonzalez, B.M., and Pereloma, E.V. (2011). Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel. Mater. Sci. Eng. A 528: 3545–3555. https://doi.org/10.1016/j.msea.2011.01.052.Search in Google Scholar

Sato, A., Soma, K., and Mori, T. (1982). Hardening due to pre-existing ϵ-Martensite in an Fe-30Mn-1Si alloy single crystal. Acta Metall. 30: 1901–1907. https://doi.org/10.1016/0001-6160(82)90030-x.Search in Google Scholar

Scott, B.R., Collet, J.L., Cael, A., Bao, C., Danoix, F., Malard, B., and Curfs, C. (2011a). Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mater. Res. 102: 538–549. https://doi.org/10.3139/146.110508.Search in Google Scholar

Scott, C., Remy, B., Collet, J., Cael, A., Bao, C., Danoix, F., Malard, B., and Curfs, C. (2011b). Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mater. Res. (formerly Z. Metallkd.) 102: 538–549. https://doi.org/10.3139/146.110508.Search in Google Scholar

Shao, C.W., Zhang, P., Liu, R., Zhang, Z.J., Pang, J.C., and Zhang, Z.F. (2016). Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater. 103: 781–795. https://doi.org/10.1016/j.actamat.2015.11.015.Search in Google Scholar

Shiekhelsouk, M., Favier, V., Inal, K., and Cherkaoui, M. (2000). Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect. Int. J. Plast. 25: 105–133. https://doi.org/10.1016/j.ijplas.2007.11.004.Search in Google Scholar

Shterner, V., Timokhina, L.B., Rollett, A.D., and Beladi, H. (2018). The role of grain orientation and grain boundary characteristics in the mechanical twinning formation in a high manganese twinning-induced plasticity steel. Metall. Mater. Trans. A 49: 2597–2611. https://doi.org/10.1007/s11661-018-4606-3.Search in Google Scholar

So, K.H., Kim, J.S., Chun, Y.S., Park, K.T., Lee, Y.K., and Lee, C.S. (2009). Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5 Al-0.6C TWIP steel. ISIJ Int. 49: 1952–1959. https://doi.org/10.2355/isijinternational.49.1952.Search in Google Scholar

Sohn, S.S., Hong, S., Lee, J., Suh, B.C., Kim, S.K., Lee, B.J., Kim, N.J., and Lee, S. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Mater. 100: 39–52. https://doi.org/10.1016/j.actamat.2015.08.027.Search in Google Scholar

Song, E.J., Bhadeshia, H.K.D.H., and Suh, D.W. (2014). Interaction of aluminium with hydrogen in twinning-induced plasticity steel. Scr. Mater. 87: 9–12. https://doi.org/10.1016/j.scriptamat.2014.06.007.Search in Google Scholar

Song, S.W., Kwon, Y.J., Lee, T., and Lee, C.S. (2016). Effect of Al addition on low-cycle fatigue properties of hydrogen-charged high-Mn TWIP steels. Mater. Sci. Eng. A 677: 421–430. https://doi.org/10.1016/j.msea.2016.09.082.Search in Google Scholar

Soulami, A., Choi, K.S., Shen, Y.F., Liu, W.N., Sun, X., and Khaleel, M.A. (2011). On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model. Mater. Sci. Eng. A 528: 1402–1408. https://doi.org/10.1016/j.msea.2010.10.031.Search in Google Scholar

Srivastava, A.K. and Das, K. (2009). Microstructural and mechanical characterization of in situ TiC and (Ti,W)C-reinforced high manganese austenitic steel matrix composites. Mater. Sci. Eng. A 516: 1–6. https://doi.org/10.1016/j.msea.2009.04.041.Search in Google Scholar

Sun, C.Y., Guo, N., Fu, M.W., and Wang, S.W. (2016). Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity. Int. J. Plast. 76: 186–212. https://doi.org/10.1016/j.ijplas.2015.08.003.Search in Google Scholar

Takagi, S., Toji, Y., Yoshino, M., and Hasegawa, K. (2012). Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles. ISIJ Int. 52: 316–322. https://doi.org/10.2355/isijinternational.52.316.Search in Google Scholar

Tian, X. and Zhang, Y. (2009). Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis. Mater. Sci. Eng. A 516: 73. https://doi.org/10.1016/j.msea.2009.02.031.Search in Google Scholar

Tian, X., Li, H., and Zhang, Y. (2008). Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys. J. Mater. Sci. 43: 6214. https://doi.org/10.1007/s10853-008-2919-0.Search in Google Scholar

Timmerscheidt, T., Dey, P., Bogdanovski, D., von Appen, J., Hickel, T., Neugebauer, J., and Dronskowski, R. (2017). The role of κ-carbides as hydrogen traps in high-Mn steels. Metals 7: 264. https://doi.org/10.3390/met7070264.Search in Google Scholar

Toribio, J., Kharin, V., Lorenzo, M., and Vergara, D. (2011). Role of drawing induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels. Corros. Sci. 53: 3346–355. https://doi.org/10.1016/j.corsci.2011.06.012.Search in Google Scholar

Troiano, A.R. (1960). The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52: 54–80.10.1007/s13632-016-0319-4Search in Google Scholar

Tsu, I.F. and Perng, T.P. (2012). Hydrogen compatibility of Femnal alloys. Metall. Trans. A 22: 215–224. https://doi.org/10.1007/bf03350963.Search in Google Scholar

Tuan, Y.H., Wang, C.S., Tsai, C.Y., Chao, C.G., and Liu, T.F. (2009). Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5% NaCl solution. Mater. Chem. Phys. 114: 595–598. https://doi.org/10.1016/j.matchemphys.2008.10.009.Search in Google Scholar

Vidilli, A.L., Otani, L.B., Wolf, W., Kiminami, C.S., Botta, W.J., Coury, F.G., and Bolfarini, C. (2020). Design of a FeMnAlC steel with TWIP effect and evaluation of its tensile and fatigue properties. J. Alloys Compd. 831: 154806. https://doi.org/10.1016/j.jallcom.2020.154806.Search in Google Scholar

Wang, R., Straszheim, M.J., and Rapp, R.A. (1984). A high-temperature oxidation-resistant Fe-Mn-Al-Si alloy. Oxid. Met. 21: 71–79. https://doi.org/10.1007/bf00659468.Search in Google Scholar

Wang, M., Akiyama, E., and Tsuzaki, K. (2005). Hydrogen degradation of a boron-bearing steel with 1050 and 1300 MPa strength levels. Scr. Mater. 52: 403–408. https://doi.org/10.1016/j.scriptamat.2004.10.023.Search in Google Scholar

Wang, M., Akiyama, E., and Tsuzaki, K. (2007). Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros. Sci. 49: 4081–4097. https://doi.org/10.1016/j.corsci.2007.03.038.Search in Google Scholar

Wiewiorowska, S. (2010). The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP effect. Solid State Phenom. 165: 216–220. https://doi.org/10.4028/www.scientific.net/ssp.165.216.Search in Google Scholar

Wong, S.L., Madivala, M., Prahl, U., Roters, F., and Raabe, D. (2016). A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 118: 140–151. https://doi.org/10.1016/j.actamat.2016.07.032.Search in Google Scholar

Yang, W.S., Wu, T.B., and Wan, C.M. (1990). Structure determination of the needle like precipitates in an alloy of Fe-29Mn-8Al-0.06C. Scr. Metall. Mater. 24: 895–900. https://doi.org/10.1016/0956-716x(90)90132-z.Search in Google Scholar

Yang, H.K., Doquet, V., and Zhang, Z.F. (2017). Fatigue crack growth in two TWIP steels with different stacking fault energies. Int. J. Fatigue 98: 247–258. https://doi.org/10.1016/j.ijfatigue.2017.01.034.Search in Google Scholar

Yazawa, Y., Furuhara, T., and Maki, T. (2004). Effect of matrix recrystallization on morphology, crystallography and coarsening behavior of vanadium carbide in austenite. Acta Mater. 52: 3727–3736. https://doi.org/10.1016/j.actamat.2004.04.027.Search in Google Scholar

Yeganeh, M., Eskandari, M., and Alavi-Zaree, S.R. (2017). A comparison between corrosion behaviors of fine-grained and coarse-grained structures of high-Mn steel in NaCl solution. J. Mater. Eng. Perform. 26: 2484–2490. https://doi.org/10.1007/s11665-017-2685-8.Search in Google Scholar

Yen, H.W., Huang, M., Scott, C.P., and Yang, J.R. (2012). Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scr. Mater. 66: 1018–1023. https://doi.org/10.1016/j.scriptamat.2012.02.002.Search in Google Scholar

Yu, W.X., Liu, B.X., He, J.N., Chen, C.X., Fang, W., and Yin, F.X. (2019). Microstructure characteristics, strengthening and toughening mechanism of rolled and aged multilayer TWIP/maraging steels. Mater. Sci. Eng. A 767: 138426. https://doi.org/10.1016/j.msea.2019.138426.Search in Google Scholar

Yuan, G.W. and Huang, M.X. (2014). Supper strong nanostructured TWIP steels for automotive applications. Prog. Nat. Sci. Mater. Int. 24: 150–155. https://doi.org/10.1016/j.pnsc.2014.01.004.Search in Google Scholar

Yuan, X., Zhao, Y., Li, X., and Chen, L. (2017). Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels. J. Mater. Sci. Technol. 33: 1555–1560. https://doi.org/10.1016/j.jmst.2017.08.004.Search in Google Scholar

Zambrano, O.A. (2018). A general perspective of Fe–Mn–Al–C steels. J. Mater. Sci. 53: 14003–14062. https://doi.org/10.1007/s10853-018-2551-6.Search in Google Scholar

Zhang, Y.S. and Zhu, X.M. (1999). Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions. Corros. Sci. 41: 1817–1833. https://doi.org/10.1016/s0010-938x(99)00017-7.Search in Google Scholar

Zu, H., Chau, K., Olugbade, T.O., Pan, L., Chow, D.H., Huang, L., Dreyer, C.H., Zheng, L., Tong, W., Li, X., et al.. (2020). Comparison of modified injection molding and conventional machining in biodegradable behavior of perforated cannulated magnesium hip stents. Journal of Materials Science & Technology, https://doi.org/10.1016/j.jmst.2020.02.057 (Epub ahead of print).Search in Google Scholar

Zuazo, I., Hallstedt, B., Lindahl, B., Selleby, M., Soler, M., Etienne, A., Perlade, A., Hasenpouth, D., Massardier-Jourdan, V., Cazottes, S., et al. (2014). Low-density steels: complex metallurgy for automotive applications. JOM 66: 1747–1758. https://doi.org/10.1007/s11837-014-1084-y.Search in Google Scholar

Received: 2020-05-26
Accepted: 2020-09-02
Published Online: 2020-10-19
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/corrrev-2020-0052/html
Scroll to top button