Skip to main content
Log in

Too Much Regularity May Force Too Much Uniqueness

  • Research paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Time-dependent fractional-derivative problems \(D_t^\alpha u + Au = f\) are considered, where \(D_t^\alpha\) is a Caputo fractional derivative of order α ∈ (0, 1)∪(1, 2) and A is a classical elliptic operator, and appropriate boundary and initial conditions are applied. The regularity of solutions to this class of problems is discussed, and it is shown that assuming more regularity than is generally true—as many researchers do—places a surprisingly severe restriction on the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Refai, Basic results on nonlinear eigenvalue problems of fractional order. Electron. J. Differ. Equ. 2012 (2012), Article # 191, 1–12.

    Article  MathSciNet  Google Scholar 

  2. V.V. Anh, N.N. Leonenko, and M.D. Ruiz-Medina, Fractional-in-time and multifractional-in-space stochastic partial differential equations. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1434–1459; 10.1515/fca-2016–0074 https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml

    Article  MathSciNet  Google Scholar 

  3. E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75 (2006), Article #254, 673–696 (electronic).

    Article  MathSciNet  Google Scholar 

  4. K. Diethelm, The Analysis of Fractional Differential Equations. Ser. Lecture Notes in Mathematics, Vol. 2004, Springer-Verlag, Berlin, 2010.

    Book  Google Scholar 

  5. B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, No 2 (2015), 561–582.

    Article  MathSciNet  Google Scholar 

  6. B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, No 1 (2016), A146–A170.

    Article  MathSciNet  Google Scholar 

  7. J. Korbel and Y. Luchko, Modeling of financial processes with a space-time fractional diffusion equation of varying order. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1414–1433; DOI: 10.1515/fca-2016–0073; https://www.degruyter.com/viewZj/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml

    Article  MathSciNet  Google Scholar 

  8. X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, No 5 (2010), 1016–1051.

    Article  MathSciNet  Google Scholar 

  9. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, No 2 (2007), 1533–1552.

    Article  MathSciNet  Google Scholar 

  10. Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, No 1 (2012), 141–160.

    Article  MathSciNet  Google Scholar 

  11. W. McLean, Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, No 2 (2010), 123–138.

    Article  MathSciNet  Google Scholar 

  12. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  13. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations Springer-Verlag, New York, 1984; Corrected reprint of the 1967 original.

    Book  Google Scholar 

  14. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No 1 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  15. M. Stynes, E. O’Riordan, and J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. Submitted (2016) for publication to: SIAM J. Numer. Anal.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stynes, M. Too Much Regularity May Force Too Much Uniqueness. FCAA 19, 1554–1562 (2016). https://doi.org/10.1515/fca-2016-0080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0080

MSC 2010

Key Words and Phrases

Navigation