Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 9, 2022

M-lump waves and their interactions with multi-soliton solutions for the (3 + 1)-dimensional Jimbo–Miwa equation

  • Hajar Farhan Ismael ORCID logo EMAIL logo , Shoukry El-Ganaini and Hasan Bulut

Abstract

In this work, the dynamical behaviors of the Jimbo–Miwa equation that describes certain interesting (3 + 1)-dimensional waves in physics but does not pass any of the conventional integrability tests are studied. One-, two-, and three-M-lump waves are constructed successfully. Interactions between one-M-lump and one-soliton wave, between one-M-lump and two-soliton wave as well as between two-M-lump and one-soliton solution are reported. Also, complex multi-soliton, solutions are offered. The simplified Hirota’s method and a long-wave method are used to construct these types of solutions. The velocity of a one-M-lump wave is studied. Straight Lines of travel for M-lump waves are also reported. To our knowledge, all gained solutions in this research paper are novel and not reported beforehand. Moreover, the gained solutions are presented graphically in three dimensions to better understand the physical phenomena of the suggested equation.


Corresponding author: Hajar Farhan Ismael, Department of Mathematics, University of Zakho, Zakho, Iraq, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. F. Ismael and H. Bulut, “On the solitary wave solutions to the (2+ 1)-dimensional Davey–Stewartson equations,” Adv. Intell. Syst. Comput., vol. 1111, pp. 156–165, 2020.10.1007/978-3-030-39112-6_11Search in Google Scholar

[2] K. K. Ali, R. Yilmazer, H. M. Baskonus, and H. Bulut, “Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves,” Phys. Scripta, vol. 95, p. 065602, 2020. https://doi.org/10.1088/1402-4896/ab81bf.Search in Google Scholar

[3] H. Ismael and H. Bulut, “On the wave solutions of (2+ 1)-dimensional time-fractional Zoomeron equation,” Konuralp J. Math., vol. 8, pp. 410–418, 2020.Search in Google Scholar

[4] N. Ozdemir, H. Esen, A. Secer, M. Bayram, A. Yusuf, and T. A. Sulaiman, “Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives,” Mod. Phys. Lett. B, vol. 36, p. 2150625, 2022. https://doi.org/10.1142/s0217984921506259.Search in Google Scholar

[5] D. Anker and N. C. Freeman, “On the soliton solutions of the Davey-Stewartson equation for long waves,” Proc. R. Soc. Lond. A, vol. 360, pp. 529–540, 1978.10.1098/rspa.1978.0083Search in Google Scholar

[6] P. Wan, J. Manafian, H. F. Ismael, and S. A. Mohammed, “Investigating one-two-and triple-wave solutions via multiple exp-function method arising in engineering Sciences,” Adv. Math. Phys., vol. 2020, p. 8018064, 2020. https://doi.org/10.1155/2020/8018064.Search in Google Scholar

[7] W. X. Ma, T. Huang, and Y. Zhang, “A multiple exp-function method for nonlinear differential equations and its application,” Phys. Scripta, vol. 82, p. 65003, 2010. https://doi.org/10.1088/0031-8949/82/06/065003.Search in Google Scholar

[8] J. Manafian, O. A. Ilhan, K. K. Ali, and S. Abid, “Cross-kink wave solutions and semi-inverse variational method for (3+ 1)-dimensional potential-YTSF equation,” East Asian J. Appl. Math., vol. 10, pp. 549–565, 2020. https://doi.org/10.4208/eajam.091119.140220.Search in Google Scholar

[9] B. Ghanbari, S. Kumar, M. Niwas, and D. Baleanu, “The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara-KdV type equations,” Results Phys., vol. 23, p. 104006, 2021. https://doi.org/10.1016/j.rinp.2021.104006.Search in Google Scholar

[10] A. Biswas, Y. Yıldırım, E. Yaşar, and M. M. Babatin, “Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF,” Optik, vol. 148, pp. 209–214, 2017. https://doi.org/10.1016/j.ijleo.2017.08.094.Search in Google Scholar

[11] S. Saha Ray, “Lie symmetry analysis, symmetry reductions with exact solutions, and conservation laws of (2 + 1)-dimensional Bogoyavlenskii-Schieff equation of higher order in plasma physics,” Math. Methods Appl. Sci., vol. 43, pp. 5850–5859, 2020. https://doi.org/10.1002/mma.6328.Search in Google Scholar

[12] S. Kumar, I. Khan, S. Rani, and B. Ghanbari, “Lie symmetry analysis and dynamics of exact solutions of the (2+ 1)-dimensional nonlinear Sharma–Tasso–Olver equation,” Math. Probl Eng., vol. 2021, 2021, Art. no. 9961764. https://doi.org/10.1155/2021/9961764.Search in Google Scholar

[13] J. Manafian, O. A. Ilhan, H. F. Ismael, S. A. Mohammed, and S. Mazanova, “Periodic wave solutions and stability analysis for the (3+1)-D potential-YTSF equation arising in fluid mechanics,” Int. J. Comput. Math., vol. 98, pp. 1594–1616, 2021. https://doi.org/10.1080/00207160.2020.1836358.Search in Google Scholar

[14] S. T. Chen and W. X. Ma, “Exact solutions to a generalized Bogoyavlensky-Konopelchenko equation via maple symbolic computations,” Complexity, vol. 2019, 2019, Art. no. 8787460.10.1155/2019/8787460Search in Google Scholar

[15] D. Liu, X. Ju, O. A. Ilhan, J. Manafian, and H. F. Ismael, “Multi-waves, breathers, periodic and cross-kink solutions to the (2+ 1)-dimensional variable-coefficient caudrey-Dodd-Gibbon-Kotera-Sawada equation,” J. Ocean Univ. China, vol. 20, pp. 35–44, 2020. https://doi.org/10.1007/s11802-021-4414-z.Search in Google Scholar

[16] T. A. Sulaiman, A. Yusuf, and A. Atangana, “New lump, lump-kink, breather waves and other interaction solutions to the (3+ 1)-dimensional soliton equation,” Commun. Theor. Phys., vol. 72, p. 85004, 2020. https://doi.org/10.1088/1572-9494/ab8a21.Search in Google Scholar

[17] S. Lou and J. Lu, “Special solutions from the variable separation approach: the Davey-Stewartson equation,” J. Phys. Math. Gen., vol. 29, p. 4209, 1996. https://doi.org/10.1088/0305-4470/29/14/038.Search in Google Scholar

[18] X. Wen, “Construction of new exact rational form non-travelling wave solutions to the (2 + 1)-dimensional generalized Broer-Kaup system,” Appl. Math. Comput., vol. 217, pp. 1367–1375, 2010. https://doi.org/10.1016/j.amc.2009.05.058.Search in Google Scholar

[19] F. Calogero and A. Degasperis, “Nonlinear evolution equations solvable by the inverse spectral transform.-I,” Il Nuovo Cimento B, vol. 32, pp. 201–242, 1976.10.1007/BF02727634Search in Google Scholar

[20] V. O. Vakhnenko, E. J. Parkes, and A. J. Morrison, “A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation,” Chaos, Solit. Fractals, vol. 17, pp. 683–692, 2003. https://doi.org/10.1016/s0960-0779(02)00483-6.Search in Google Scholar

[21] H. Bulut, E. N. Aksan, M. Kayhan, and T. A. Sulaıman, “New solitary wave structures to the (3+ 1) dimensional Kadomtsev–Petviashvili and Schrödinger equation,” J. Ocean Eng. Sci., vol. 4, pp. 373–378, 2019. https://doi.org/10.1016/j.joes.2019.06.002.Search in Google Scholar

[22] K. K. Ali, A. R. Seadawy, A. Yokus, R. Yilmazer, and H. Bulut, “Propagation of dispersive wave solutions for (3+ 1)-dimensional nonlinear modified Zakharov–Kuznetsov equation in plasma physics,” Int. J. Mod. Phys. B, vol. 34, p. 2050227, 2020. https://doi.org/10.1142/s0217979220502276.Search in Google Scholar

[23] H. F. Ismael, H. Bulut, and H. M. Baskonus, “Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m + (G′/G))-expansion method,” Pramana - J. Phys., vol. 94, pp. 1–9, 2020.10.1007/s12043-019-1897-xSearch in Google Scholar

[24] H. M. Baskonus, H. Bulut, and T. A. Sulaiman, “Investigation of various travelling wave solutions to the extended (2+ 1)-dimensional quantum ZK equation,” Eur. Phys. J. Plus, vol. 132, pp. 1–8, 2017. https://doi.org/10.1140/epjp/i2017-11778-y.Search in Google Scholar

[25] K. K. Ali, R. Yilmazer, and H. Bulut, “Analytical solutions to the coupled Boussinesq–Burgers equations via sine-gordon expansion method,” Adv. Intell. Syst. Comput., vol. 1111, p. 233, 2020.10.1007/978-3-030-39112-6_17Search in Google Scholar

[26] K. K. Ali, R. Yilmazer, H. M. Baskonus, and H. Bulut, “New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics,” Indian J. Phys., vol. 95, pp. 1003–1008, 2020. https://doi.org/10.1007/s12648-020-01773-9.Search in Google Scholar

[27] I. Jaradat, M. Alquran, S. Qureshi, T. A. Sulaiman, and A. Yusuf, “Convex-rogue, half-kink, cusp-soliton and other bidirectional wave-solutions to the generalized Pochhammer-Chree equation,” Phys. Scripta, vol. 97, p. 55203, 2022. https://doi.org/10.1088/1402-4896/ac5f25.Search in Google Scholar

[28] T. A. Sulaiman, H. Bulut, and H. M. Baskonus, “On the exact solutions to some system of complex nonlinear models,” Appl. Math. Nonlinear Sci., vol. 6, pp. 29–42, 2021. https://doi.org/10.2478/amns.2020.2.00007.Search in Google Scholar

[29] T. A. Sulaiman, “Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis,” Phys. Scripta, vol. 95, p. 65201, 2020. https://doi.org/10.1088/1402-4896/ab7c77.Search in Google Scholar

[30] H. F. Ismael and H. Bulut, “Nonlinear dynamics of (2 + 1)-dimensional Bogoyavlenskii–Schieff equation arising in plasma physics,” Math. Methods Appl. Sci., vol. 44, pp. 10321–10330, 2021. https://doi.org/10.1002/mma.7409.Search in Google Scholar

[31] H. F. Ismael, A. Seadawy, and H. Bulut, “Multiple soliton, fusion, breather, lump, mixed kink-lump and periodic solutions to the extended shallow water wave model in (2+ 1)-dimensions,” Mod. Phys. Lett. B, vol. 35, p. 2150138, 2021. https://doi.org/10.1142/s0217984921501384.Search in Google Scholar

[32] H. F. Ismael, A. Seadawy, and H. Bulut, “Rational solutions, and the interaction solutions to the (2+ 1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation,” Int. J. Comput. Math., vol. 98, pp. 2369–2377, 2021. https://doi.org/10.1080/00207160.2021.1897112.Search in Google Scholar

[33] H. F. Ismael, A. Seadawy, and H. Bulut, “Construction of breather solutions and N-soliton for the higher order dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising from wave patterns,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 21, no. 1, pp. 319–327, 2023. https://doi.org/10.1515/ijnsns-2020-0169.Search in Google Scholar

[34] M. S. Osman and B. Ghanbari, “Optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach,” Optik, vol. 175, pp. 328–333, 2018. https://doi.org/10.1016/j.ijleo.2018.08.007.Search in Google Scholar

[35] H. F. Ismael, H. Bulut, and H. M. Baskonus, “W-shaped surfaces to the nematic liquid crystals with three nonlinearity laws,” Soft Computing, vol. 25, pp. 4513–4524, 2021. https://doi.org/10.1007/s00500-020-05459-6.Search in Google Scholar

[36] U. Younas, M. Bilal, T. A. Sulaiman, J. Ren, and A. Yusuf, “On the exact soliton solutions and different wave structures to the double dispersive equation,” Opt. Quant. Electron., vol. 54, pp. 1–22, 2022. https://doi.org/10.1007/s11082-021-03445-2.Search in Google Scholar

[37] S. Xu and J. He, “The rogue wave and breather solution of the gerdjikov-ivanov equation,” J. Math. Phys., vol. 53, p. 063507, 2012. https://doi.org/10.1063/1.4726510.Search in Google Scholar

[38] Y. Zhang, J. W. Yang, K. W. Chow, and C. F. Wu, “Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation,” Nonlinear Anal. R. World Appl., vol. 33, pp. 237–252, 2017. https://doi.org/10.1016/j.nonrwa.2016.06.006.Search in Google Scholar

[39] Z. Z. Lan and J. J. Su, “Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system,” Nonlinear Dynam., vol. 96, pp. 2535–2546, 2019. https://doi.org/10.1007/s11071-019-04939-1.Search in Google Scholar

[40] Z.-Z. Lan, “Dark solitonic interactions for the (3 + 1)-dimensional coupled nonlinear Schrödinger equations in nonlinear optical fibers,” Opt Laser. Technol., vol. 113, pp. 462–466, 2019. https://doi.org/10.1016/j.optlastec.2018.12.040.Search in Google Scholar

[41] N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: on the nature of rogue waves,” Phys. Lett., vol. 373, pp. 2137–2145, 2009. https://doi.org/10.1016/j.physleta.2009.04.023.Search in Google Scholar

[42] N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions,” Sov. Phys. JETP, vol. 62, pp. 894–899, 1985.Search in Google Scholar

[43] E. A. Kuznetsov, “Solitons in a parametrically unstable plasma,” Akademiia Nauk SSSR Doklady, vol. 236, pp. 575–577, 1977.Search in Google Scholar

[44] M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., vol. 19, pp. 943–1001, 1983. https://doi.org/10.2977/prims/1195182017.Search in Google Scholar

[45] T. Öziş and I. Aslan, “Exact and explicit solutions to the (3+ 1)-dimensional Jimbo–Miwa equation via the Exp-function method,” Phys. Lett., vol. 372, pp. 7011–7015, 2008. https://doi.org/10.1016/j.physleta.2008.10.014.Search in Google Scholar

[46] W.-X. Ma and J.-H. Lee, “A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo–Miwa equation,” Chaos, Solit. Fractals, vol. 42, pp. 1356–1363, 2009. https://doi.org/10.1016/j.chaos.2009.03.043.Search in Google Scholar

[47] G. Xu, “The soliton solutions, dromions of the Kadomtsev–Petviashvili and Jimbo–Miwa equations in (3+ 1)-dimensions,” Chaos, Solit. Fractals, vol. 30, pp. 71–76, 2006. https://doi.org/10.1016/j.chaos.2005.08.089.Search in Google Scholar

[48] A. M. Wazwaz, “Multiple-soliton solutions for the calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations,” Appl. Math. Comput., vol. 203, pp. 592–597, 2008. https://doi.org/10.1016/j.amc.2008.05.004.Search in Google Scholar

[49] X. Wang and S. Bilige, “Novel interaction phenomena of the (3+ 1)-dimensional Jimbo–Miwa equation,” Commun. Theor. Phys., vol. 72, p. 45001, 2020. https://doi.org/10.1088/1572-9494/ab690c.Search in Google Scholar

[50] H. Wang, S. Tian, T. Zhang, and Y. Chen, “Lump wave and hybrid solutions of a generalized (3 + 1)-dimensional nonlinear wave equation in liquid with gas bubbles,” Front. Math. China, vol. 14, pp. 631–643, 2019. https://doi.org/10.1007/s11464-019-0775-7.Search in Google Scholar

Received: 2021-12-18
Revised: 2022-07-01
Accepted: 2022-07-14
Published Online: 2022-08-09

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2021-0468/html
Scroll to top button