Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 31, 2022

Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation

  • H. M. Eyssa EMAIL logo , Heba. M. El Refay and M. H. Sanad
From the journal Radiochimica Acta

Abstract

This study investigates the physicochemical and thermal properties of styrene–butadiene rubber (SBR) nanocomposite foam. Nano-calcium carbonate (CaCO3) was prepared from eggshells (ESs) waste. Sponge rubber nanocomposites were prepared and were irradiated by electron beam (EB) radiation at 25, 75, and 150 kGy. Their physicochemical properties, including foam density, compression set (CS), hardness, abrasion loss, and expansion ratio, and their thermal stability were investigated. The physicochemical properties were enhanced by adding 2.5 phr of a foaming agent. Among the composites examined, the foam composites containing nano-CaCO3 had the lowest CS, abrasion loss, and expansion ratio and the highest hardness and foam density. The results confirmed that the thermal stability was improved by incorporating nano-CaCO3 into the SBR foam and as the radiation dose increased. The sponge containing nanoclay demonstrated an intermediate behavior, whereas that with CaCO3 nanoparticles showed low average cell diameter and size and high cell wall thickness. The radiation process enhanced the foam density, CS, abrasion loss, hardness, and thermal property of the developed nanocomposites by inducing the formation of intermolecular crosslinks within the composite matrix. The results showed that physicochemical properties improved by increasing the radiation dose at 25 kGy.


Corresponding author: H. M. Eyssa, Radiation Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P. O. Box 29, Cairo, Egypt, E-mail: ; and M. H. Sanad, Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

References

1. Sombatsompop, N., Lertkamolsin, P. Effects of chemical blowing agents on swelling properties of expanded elastomers. J. Elastomers Plastics 2000, 32, 311; https://doi.org/10.1106/unc2-f4ah-ekrl-kqwv.Search in Google Scholar

2. Zaky, M. M., Eyssa, H. M., Sadek, R. F. Improvement of the magnesium battery electrolyte properties through gamma irradiation of nano polymer electrolytes doped with magnesium oxide nanoparticles. J. Vinyl Addit. Technol. 2019, 25, 243; https://doi.org/10.1002/vnl.21683.Search in Google Scholar

3. Xie, P., Wu, G., Cao, Z., Han, Z., Zhang, Y., An, Y., Yang, W. Effect of mold Peninga process on microporous structure and properties of microcellular polylactide-polylactide nanocomposites. Polymers 2018, 10, 554; https://doi.org/10.3390/polym10050554.Search in Google Scholar PubMed PubMed Central

4. Peng, J., Walsh, P. J., Sabo, R. C., Turng, L. S., Clemons, C. M. Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer 2016, 84, 158; https://doi.org/10.1016/j.polymer.2015.12.050.Search in Google Scholar

5. Song, W., Barber, K., Lee, K. Y. Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. Polymer 2017, 118, 97; https://doi.org/10.1016/j.polymer.2017.04.058.Search in Google Scholar

6. Arroyo, C. S., Saja, J. A. D., Velasco, J. I., Pérez, M. Á. R. Moulded polypropylene foams produced using chemical or physical blowing agents: structure-properties relationship. J. Mater. Sci. 2012, 47, 5680; https://doi.org/10.1007/s10853-012-6357-7.Search in Google Scholar

7. Senna, M. M., Youssef, H. A., Eyssa, H. M. Effect of electron beam irradiation, EPDM and azodicarbonamide on the foam properties of LDPE sheet. Polym. Plast. Technol. Eng. 2007, 46, 1093; https://doi.org/10.1080/03602550701525271.Search in Google Scholar

8. Eyssa, H. M., El Mogy, S. A., Youssef, H. A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber. Radiochim. Acta 2021, 109, 127; https://doi.org/10.1515/ract-2020-0015.Search in Google Scholar

9. Malinowski, R., Stepczyńska, M., Kaczor, A. R., Żuk, T. Some effects of foaming of the poly (butylene adipate-co-terephthalate) modified by electron radiation. Polym. Adv. Technol. 2018, 29, 1117; https://doi.org/10.1002/pat.4223.Search in Google Scholar

10. Han, X., Zeng, C., Lee, L. J., Koelling, K. W., Tomasko, D. L. Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym. Eng. Sci. 2003, 43, 1261; https://doi.org/10.1002/pen.10107.Search in Google Scholar

11. Somdee, P., Hasook, A. Effect of modified eggshell powder on physical properties of poly (lactic acid) and natural rubber composites. Mater. Today: Proceedings 2017, 4, 6502; https://doi.org/10.1016/j.matpr.2017.06.160.Search in Google Scholar

12. Ghabeer, T., Dweiri, R., Al-Khateeb, S. Thermal and mechanical characterization of polypropylene/eggshell biocomposites. J. Reinforc. Plast. Compos. 2013, 32, 402; https://doi.org/10.1177/0731684412470015.Search in Google Scholar

13. Koo, C. M., Kim, S. O., Chung, I. J. Study on morphology evolution, orientational behavior, and anisotropic phase formation of highly filled polymer-layered silicate nanocomposites. Macromolecules 2003, 36, 2748; https://doi.org/10.1021/ma021377n.Search in Google Scholar

14. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamicaito, O. J. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185; https://doi.org/10.1557/jmr.1993.1185.Search in Google Scholar

15. Hegazi, E. M., Eyssa, H. M., Abd El-Megeed, A. A. Effect of nanofiller on the ageing of rubber seal materials under gamma irradiation. J. Compos. Mater. 2019, 53, 2065; https://doi.org/10.1177/0021998318819178.Search in Google Scholar

16. Eyssa, H. M., Osman, M., Kandil, S. A., Abdelrahman, M. M. Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA. Nucl. Sci. Tech. 2015, 26, 060306.Search in Google Scholar

17. Eyssa, H. M., Elnaggar, M. Y., Zaky, M. M. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials. Polym. Eng. Sci. 2021, 61, 2843; https://doi.org/10.1002/pen.25804.Search in Google Scholar

18. Bayat, H., Fasihi, M., Zare, Y., Rhee, K. Y. An experimental study on one-step and two-step foaming of natural rubber/silica nanocomposites. Nanotechnol. Rev. 2020, 9, 427; https://doi.org/10.1515/ntrev-2020-0032.Search in Google Scholar

19. Bayat, H., Fasihi, M. Curing characteristics and cellular morphology of natural rubber/silica composite foams. Polym. Bull. 2020, 77, 3171; https://doi.org/10.1007/s00289-019-02907-8.Search in Google Scholar

20. Jing, S., Shipeng, W., Yishi, D., Ning, L., Liqun, Z., Yusheng, Y., Li, L. The network and properties of the NR/SBR vulcanizate modified by electron beam irradiation. Radiat. Phys. Chem. 2013, 92, 99.10.1016/j.radphyschem.2013.07.022Search in Google Scholar

21. Lopattananon, N., Julyanon, J., Masa, A., Kaesaman, A., Thongpin, C., Sakai, T. The role of nanofillers on (natural rubber)/(ethylene vinyl acetate)/clay nanocomposite in blending and foaming. J. Vinyl Addit. Technol. 2015, 21, 134; https://doi.org/10.1002/vnl.21368.Search in Google Scholar

22. Zhang, B. S., Lv, X. F., Zhang, Z. X., Liu, Y., Kim, J. K., Xin, Z. X. Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams. Mater. Des. 2010, 31, 3106; https://doi.org/10.1016/j.matdes.2009.12.041.Search in Google Scholar

23. Bayat, H., Fasihi, M. Effect of coupling agent on the morphological characteristics of natural rubber/silica composites foams. E-Polymers 2019, 430, 430–436 https://doi.org/10.1515/epoly-2019-0044.Search in Google Scholar

24. Samsudin, M. S. F., Ariff, Z. M., Ariffin, A. Deformation behavior of open-cell dry natural rubber foam: effect of different concentration of blowing agent and compression strain rate. In AIP Conf. Proc. 1835, 020007-1–020007-5.10.1063/1.4981829Search in Google Scholar

25. Youssef, H. A., Senna, M. M., Eyssa, H. M., Sarhan, A. Fabrication of sponge nitrile butadiene rubber (NBR) by subsequent sulphur and electron beam irradiation. Mans. J. Chem. 2010, 37, 155.Search in Google Scholar

26. Yamsaengsung, W., Sombatsompo, N. Effect of chemical blowing agent on cell structure and mechanical properties of EPDM foam, and peel strength and thermal conductivity of wood/NR composite–EPDM foam laminates. Compos. B Eng. 2009, 40, 594; https://doi.org/10.1016/j.compositesb.2009.04.003.Search in Google Scholar

27. Salmazo, L. O., Gil, A. L., Ariff, Z. M., Job, A. E., Perez, M. A. R. Influence of the irradiation dose in the cellular structure of natural rubber foams cross-linked by electron beam irradiation. Ind. Crop. Prod. 2016, 89, 339; https://doi.org/10.1016/j.indcrop.2016.05.023.Search in Google Scholar

28. Senna, M. M., Mostafa, A. B., Mahdy, S. R., El-Naggar, A. M. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nuclear Inst. and Methods in Physics Research, B, 2016, 386, 22–29; https://doi.org/10.1016/j.nimb.2016.09.020.Search in Google Scholar

29. Zhai, W., Park, C. B., Kontopoulou, M. Nanosilica addition dramatically improves the cell morphology and expansion ratio of polypropylene heterophasic copolymer foams blown in continuous extrusion. Ind. Eng. Chem. Res. 2011, 50, 7282; https://doi.org/10.1021/ie102438p.Search in Google Scholar

30. Huang, Q., Klötzer, R., Seibig, B., Paul, D. Extrusion of microcellular polysulfone using chemical blowing agents. Journal of Applied Polymer Science, 1998, 69, 1753–1760; https://doi.org/10.1002/(sici)1097-4628(19980829)69:9<1753::aid-app9>3.0.co;2-a.10.1002/(SICI)1097-4628(19980829)69:9<1753::AID-APP9>3.0.CO;2-ASearch in Google Scholar

31. Di, Y., Iannace, S., Maio, E. D., Nicolais, L. Poly (lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J. Polym. Sci. B Polym. Phys. 2005, 43, 689; https://doi.org/10.1002/polb.20366.Search in Google Scholar

32. Zeng, C., Han, X., Lee, L. J., Koelling, K. W., Tomasko, D. L. Polymer-clay nanocomposite foam prepared using carbon dioxides. Adv. Mater. 2003, 15, 1743; https://doi.org/10.1002/adma.200305065.Search in Google Scholar

33. Liu, P., Liu, D., Zou, H., Fan, P., Xu, W. Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber. J. Appl. Polym. Sci. 2009, 113, 3590; https://doi.org/10.1002/app.30341.Search in Google Scholar

34. Zhang, Z. X., Wang, C., Wang, S., Wen, S., Phule, A. D. A lightweight, thermal insulation and excellent weatherability foam crosslinked by electron beam irradiation. Radiat. Phys. Chem. 2020, 173, 108890; https://doi.org/10.1016/j.radphyschem.2020.108890.Search in Google Scholar

35. Ratnam, C. T., Kamaruddin, S., Sivachalam, Y., Talib, M., Yahya, N. Polym. Test. 2006, 25, 475; https://doi.org/10.1016/j.polymertesting.2006.01.012.Search in Google Scholar

36. He, H., Li, K., Wang, J., Sun, G., Li, Y., Wang, J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater. Des. 2011, 32, 4521; https://doi.org/10.1016/j.matdes.2011.03.026.Search in Google Scholar

37. Eyssa, H. M., Sawires, S. G., Senna, M. M. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. J. Vinyl Addit. Technol. 2019, 25, 120; https://doi.org/10.1002/vnl.21660.Search in Google Scholar

38. Sharmin, N., Khan, R. A., Dussault, D., Salmieri, S., Akter, N., Lacroix, M. Effectiveness of silane monomer and gamma radiation on chitosan films and PCL-based composites. Radiat. Phys. Chem. 2012, 81, 932; https://doi.org/10.1016/j.radphyschem.2011.12.047.Search in Google Scholar

39. Tang, E., Cheng, G., Ma, X., Pang, X., Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 2000, 252, 5227.10.1016/j.apsusc.2005.08.004Search in Google Scholar

40. Chang, Y. W., Lee, D., Bae, S. Y. Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. Polym. Int. 2006, 55, 184; https://doi.org/10.1002/pi.1936.Search in Google Scholar

41. Sanad, M. H., Fouzy, A. S. M., Sobhy, H. M., Hathout, A. S., Hussain, O. A. Tracing the protective activity of Lactobacillus plantarum using technetium-99m-labeled zearalenone for organtoxicity. Int. J. Radiat. Biol. 2018, 94, 1151–1158.10.1080/09553002.2019.1524990Search in Google Scholar PubMed

42. Eyssa, H. M., Abulyazied, D. E., Abo-State, M. A. M. Application of polyurethane /gamma-irradiated carbon nanotubes composites as antifouling coat. Polym. Compos. 2018, 39, E1196.10.1002/pc.24718Search in Google Scholar

43. Eyssa, H. M., Mohamed, W. S., El-Zayat, M. M. Irradiated rubber composite with nano and microfillers for mining rock application. Radiochim. Acta. 2019, 107, 737.10.1515/ract-2018-2989Search in Google Scholar

44. Youssef, A. H., SennaM, M. M, Eyssa, H. M. Characterization of LDPE and LDPE/EVA blends crosslinked by electron beam irradiation and foamed with chemical foaming agent J. Polym. Res. 2007, 14, 351.10.1007/s10965-007-9117-7Search in Google Scholar

45. Eyssa, H. M., Abulyazied, D. E., Abdulrahman, M., Youssef, H. A. Mechanical and physical properties of nanosilica/nitrile butadienerubber composites cured by gamma irradiation. Egypt. J. Petro. 2018, 27, 383.10.1016/j.ejpe.2017.06.004Search in Google Scholar

46. Sanad, M. H., Eyssa, H. M., Gomaa, N. M., Marzook, F. A., Sabry, B. A. Radioiodinated esomeprazole as a model for peptic ulcer localization. Radiochim. Acta, 2021, 109, 711.10.1515/ract-2021-1056Search in Google Scholar

47. Youssef, H. A.,Abdel-Monem, Y. K.,El-Sherbiny, I. M., Eyssa, H. M.,El-Raheem, H. M. Effect of ionizing radiation on the properties of some synthesized polyurethanes. J. Pharm. Biol. Chem. Sci. 2016, 7, 855.Search in Google Scholar

48. Eyssa, H. M., Hassan, M.S. Surface characteristics of cotton/ polyester fabric coated with poly-urethane elastomers cured thermally or by using gamma irradiation. Egypt. J. Rad. Sci. Applic. 2014, 27, 91.10.21608/ejrsa.2014.1511Search in Google Scholar

49 Sanad, M. H., Eyssa, H. M., Marzook, F. A., Farag, A. B., Rizvic, S. F. A.,Mandal, S. K., Patnaik, S. S., Fouzy, A. S. M., Sabry, B. A., Verpoort, F. Radiosynthesis and biological evaluation of 99mTc nitrido-levetiracetam as a brain imaging agent. Radiochemistry, 2021, 63, 635.10.1134/S106636222105012XSearch in Google Scholar

50. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Farag, A. B., Rizvic, S. F. A.,Mandal, S. K., Patnaik, S. S., Fouzy, A. S. M., Sabry, B. A., Verpoort, F. Comparative bioevaluation of 99mTc tricarbonyl and 99mTc-Sn(II) lansoprazole as a model for peptic ulcer localization. Radiochemistry. 2021, 63, 642.10.1134/S1066362221050131Search in Google Scholar

51. Ayman, F., Ping, A. W., Hesham, M. S. Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning. Biol. Med. Chem. 2020, https://doi.org/10.26434/chemrxiv.12003930.v3.Search in Google Scholar

52. Gala, E. H., M. F. Nahed, Ayman, F., Sheikha, A. A. Design, synthesis, molecular docking and anti-hepatocellular carcinoma evaluation of novel acyclic pyridine thioglycosides. Nucleos. Nucleot. Nucl. 2018, 37, 186–198.10.1080/15257770.2018.1450508Search in Google Scholar PubMed

53. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600–607.10.1002/jlcr.3541Search in Google Scholar PubMed

54. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta. 2017, 105, 389–398.10.1515/ract-2016-2683Search in Google Scholar

55. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307–312.10.1134/S1066362217030158Search in Google Scholar

56. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m pantoprazole. Radiochemistry 2013, 55, 341–345.10.1134/S106636221303017XSearch in Google Scholar

57. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605–609.10.1134/S1066362213060076Search in Google Scholar

58. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 422–430.10.1134/S1066362215040165Search in Google Scholar

59. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396–401.10.1134/S1066362217040129Search in Google Scholar

60. Sanad, M. H., Sallam, K. M., Marzook, F. Labeling and biological evaluation of 99mTc-tricarbonyl-chenodiol for hepatobiliary imaging. Radiochemistry 2017, 59, 525–529.10.1134/S10663622170500149Search in Google Scholar

61. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729–737.10.1515/ract-2016-2714Search in Google Scholar

62. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTcN-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229–238.10.1515/ract-2017-2804Search in Google Scholar

63. Sanad, M. H. Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J. Anal. Sci. Technol. 2014, 5, 23.10.1186/s40543-014-0023-4Search in Google Scholar

64. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84–91.10.1134/S1066362216010136Search in Google Scholar

65. Abdel-Ghaney, I. Y., Sanad, M. H. Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. Radiochemistry 2013, 55, 418–422.10.1134/S1066362213040139Search in Google Scholar

66. Ibrahim, I. T., Sanad, M. H. Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent. Radiochemistry 2013, 55, 336–340.10.1134/S1066362213030168Search in Google Scholar

67. Motaleb, M. A., Adli, A. S. A., El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J. Label Compd. Radiopharm. 2016, 59, 157–163.10.1002/jlcr.3384Search in Google Scholar PubMed

68. Sanad, M. H., El-Bayoumy, A. S. A., Alhussein, A. I. Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn(II) complexes of novel quinoline derivative: a promising infection radiotracer. J. Radioanal. Nucl. Chem. 2017, 311, 1–14.10.1007/s10967-016-4945-8Search in Google Scholar

69. Sanad M, H., Emad, H. B. Comparative biological evaluation between 99mTc- tricarbonyl and 99mTc-Sn(II) levosalbutamol as a β2- adrenoceptor agonist. Radiochim. Acta 2015, 103, 879–891.10.1515/ract-2015-2428Search in Google Scholar

70. Sanad, M. H., El-Tawoosy, M. Labeling of ursodeoxycholic acid with Technetium-99m for hepatobiliary imaging. J. Radioanal. Nucl. Chem. 2013, 298, 1105–1109.10.1007/s10967-013-2512-0Search in Google Scholar

71. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624–628.10.1134/S1066362213060118Search in Google Scholar

72. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J. Radioanal. Nucl. Chem. 2016, 308, 279–286.10.1007/s10967-015-4338-4Search in Google Scholar

73. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521–526.10.1134/S1066362213050123Search in Google Scholar

74. Sanad, M. H., Sakr, T. M., Walaa, H. A. A., Marzook, E. A. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors J. Radioanal. Nucl. Chem., 2017, 314, 1505–1515.10.1007/s10967-016-5120-ySearch in Google Scholar

75. Sanad, M. H., Farag, A. B., Dina, H. S. J. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label Compd. Radiopharm. 2018, 61, 501–508.10.1002/jlcr.3614Search in Google Scholar PubMed

76. Sanad, M. H., AbelrahmanM, A., Marzook, F. M. A. Radioiodination and biological evaluation of levalbuterol as a new selective radiotracer: a β2-adrenoceptor agonist. Radiochim. Acta 2016, 104, 345–353.10.1515/ract-2015-2518Search in Google Scholar

77. Sanad, M. H., Marzook, E. A., Challan, S. B. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 329–336.10.1515/ract-2017-2830Search in Google Scholar

78. Motaleb, M. A., Selim, A. A., El-Tawoosy, M., Sanad, M. H., El-Hashash, M. A. Synthesis, radiolabeling and biological distribution of a new dioxime derivative as a potential tumor imaging agent. J. Radioanal. Nucl. Chem. 2017, 314, 1517–1522.10.1007/s10967-017-5310-2Search in Google Scholar

79. Moustapha, M. E., Motaleb, M. A., & Sanad, M. H. Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptormediated cardiac imaging. J. Radioanal. Nucl. Chem. 2016, 309, 511–516.10.1007/s10967-015-4622-3Search in Google Scholar

80. Sanad, M. H., Ibrahim, A. A., Talaat, H. M. Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(Furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical. J. Radioanal. Nucl. Chem. 2018, 315, 57–63.10.1007/s10967-017-5617-zSearch in Google Scholar

81. Massoud, A., Challan, S. B., Maziad, N. Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. J. Macromol. Sci., Part A 2021, 58, 408–418.10.1080/10601325.2021.1873070Search in Google Scholar

82. Mathur, A., Mallia, M. B., Subramanian, S., Banerjee, S., Kothari, K., Dhotare, B., Sarmad, H. D., Venkatesh, M. 99mTc-N complexes of tertbutyl dithiocarbamate and methoxyisobutyl dithiocarbamate as myocardial and brain imaging agents. Nucl. Med. Commun. 2005, 26, 1013–1019.10.1097/01.mnm.0000183793.51474.2fSearch in Google Scholar PubMed

83. Farid, O. M., Ojovan, M. I., Massoud, A., Rahman, R. O. Abdel. An assessment of initial leaching characteristics of alkali-borosilicate glasses for nuclear waste immobilization. Materials 2019, 12, 1462.10.3390/ma12091462Search in Google Scholar PubMed PubMed Central

84. Massoud, A., Farid, O. M., Maree, R. M., Allan, K. F., Tian, Z. R. An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation. React. Funct. Polym. 2020, 151, 104564.10.1016/j.reactfunctpolym.2020.104564Search in Google Scholar

85. Challan, S. B., Massoud, A. Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 2017, 314, 2189–2199.10.1007/s10967-017-5561-ySearch in Google Scholar

86. Massoud, A., Waly, S. A., Abou El-Nour, F. Removal of U (VI) from simulated liquid waste using synthetic organic resin. Radiochemistry 2017, 59, 272–279.10.1134/S1066362217030092Search in Google Scholar

87. Massoud, A., Mahmoud, H. H. Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In (III) from Ga (III). J. Inorg. Organomet. Polym. Mater. 2017, 27, 1806–1815.10.1007/s10904-017-0645-2Search in Google Scholar

88. Elgemeie, G. H., Fathy, N. M., Farag, A. B., Yahab, I. B. Design and synthesis of new class indeno[1,2-b]pyridine thioglycosides. Nucleoside Nucleotide Nucleic acid 2020, 39, 1–16.10.1080/15257770.2020.1780436Search in Google Scholar PubMed

89. Farag, A. B., Ewida, H. E., Ahmed, M. S. Design, synthesis, and biological evaluation of novel amide and hydrazide based thioether analogs targeting Histone deacteylase (HDAC) enzymes. Eur. J. Med. Chem. 2018, 148, 73–85.10.1016/j.ejmech.2018.02.011Search in Google Scholar PubMed

90. Farag, A. B., Magdi, A. Spectrophotometric study of the interaction between a novel benzothiazolethioglycoside as antimicrobial agent with bovine serum albumin. Chem. Res. J. 2017, 2, 66–72.Search in Google Scholar

91. Elgemeie, G. H., Farag, A. B. Design, synthesis, and in vitro anti-hepatocellular carcinoma of novel thymine thioglycoside analogs as new antimetabolic agents. Nucleoside Nucleotide Nucleic acid 2017, 36, 328–342.10.1080/15257770.2017.1287377Search in Google Scholar PubMed

92. Elgemeie, G. H., Fathy, N. M., Farag, A. B., Kursani, S. A. Novel synthesis of dihydropyridine thioglycosides and their cyctotoxic activity. Nucleoside Nucleotide Nucleic acid 2017, 36, 355–377.10.1080/15257770.2016.1257807Search in Google Scholar PubMed

93. Elgemeie, G. H., Fathy, N. M., Zaghary, W. A., Farag, A. B. S-Glycosides in medicinal chemistry: novel synthesis of cyanoethylenethioglycosides and their pyrazole derivatives. Nucleoside Nucleotide Nucleic acid 2017, 36, 198–212.10.1080/15257770.2016.1257807Search in Google Scholar

94. Farag, A. B., Wang, P., Boys, I., Schoggins, J., Sadek, H. Identification of Atovaquone Ouabain and Mebendazole as FDA Approved Drugs Targeting SARS-COV-2; ChemRxiv, 2020.10.26434/chemrxiv.12003930.v4Search in Google Scholar

95. Ayman, F., Ping, A. W., Hesham, M. S. Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning. Biol. Med. Chem. 2020. https://doi.org/10.%2026434/chemrxiv.12003930.v3.Search in Google Scholar

96: Shah, S. Q., Khan, M. R., Ali, S. M. Radiosynthesis of 99mTc (CO)3- clinafloxacin dithiocarbamate and its biological evaluation as a potential staphylococcus aureus infection radiotracer. Nucl. Med. Mol. Imag. 2011, 45, 248–254.10.1007/s13139-011-0106-8Search in Google Scholar PubMed PubMed Central

97. Sanad, M. H., Sallam, K. M., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label Compd. Radiopharm. 2016, 59, 484–491.10.1002/jlcr.3435Search in Google Scholar PubMed

98. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605–609.10.1134/S1066362213060076Search in Google Scholar

99. Sanad, M. H., Shweeta, H. A. Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary Imaging. J Mol Imag Dynamic 2015, 5, 1–6.Search in Google Scholar

100. Sanad, M. H., Emad, H. B. Performance characteristics of biodistribution of 99mTc-cefprozil for in-vivo infection imaging. J. Anal. Sci. Technol. 2014, 5, 32.10.1186/s40543-014-0032-3Search in Google Scholar

101. Sanad, M. H. Ph. D. Thesis; Faculty of Science, Ain-Shams University: Cairo, Egypt, 2007.Search in Google Scholar

102. Sanad, M. H. MSc Thesis; Faculty of Science, Zagazig University: Cairo, Egypt, 2004.Search in Google Scholar

103. Sanad, H. M., Ibrahim A. A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 843–850.10.1515/ract-2018-2960Search in Google Scholar

104. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, radiolabeling and biodistribution of a novel cyclohexane dioxime derivative as a potential candidate for tumor imaging. Int. J. Radiat. Biol. 2018, 94, 590–596.10.1080/09553002.2018.1466067Search in Google Scholar PubMed

105. Sanad, M. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging. Radiochim. Acta 2021, 109, 41–46.10.1515/ract-2020-0025Search in Google Scholar

106. Sanad, M. H., Farag, A. B., Saleh, G. M. Radiosynthesis and biological evaluation of 188Re-5,10,15,20–Tetra (4-pyridyl)- 21H,23H-porphyrin complex as a tumor-targeting agent. Radiochemistry 2019, 61, 347–351.10.1134/S106636221903010XSearch in Google Scholar

107. Sanad, M. H., Talaat, H. M., Fouzy, A. S. M. Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging. Radiochim. Acta 2018, 106, 393–400.10.1515/ract-2017-2840Search in Google Scholar

108. Sanad, M. H., Rizvi, F. A., Kumar, R. R. Radiosynthesis and bioevaluation of ranitidine as highly selective radiotracer for peptic ulcer disorder detection. Radiochemistry 2020, 62, 119–124.10.1134/S1066362220010154Search in Google Scholar

109. Sanad, M. H., Sallam, K. M., Salama, D. H. 99mTc-Oxiracetam as a potential agent for diagnostic imaging of brain: labeling, characterization, and biological evaluation. Radiochemistry 2018, 60, 58–63.10.1134/S1066362218010101Search in Google Scholar

110. Sanad, M. H., Marzook, E. A., El-Kawy, O. A. Radiochemical and biological characterization of 99mTc-Oxiracetam as a model for brain imaging. Radiochemistry 2017, 59, 624–629.10.1134/S1066362217060011XSearch in Google Scholar

111. Sanad, M. H., Safaa, B. C., Fawzy, A. M., Sayed, M. A., Ebtisam, A. M. Radioiodination and biological evaluation of cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. Radiochim. Acta 2021, 109, 109–117.10.1515/ract-2020-0046Search in Google Scholar

112. Sanad, M. H., Marzook, F. A., Gehan, S., Farag, A. B., Talaat, H. M. Radiolabeling, preparation, and bioevaluation of 99mTc-Azathioprine as a potential targeting agent for solid tumor imaging. Radiochemistry 2019, 61, 478–482.10.1134/S106636221904012XSearch in Google Scholar

113. Ibrahim, I. T., Abdelhalim, S. M., Sanad, M. H., Motaleb, M. A. Radioiodination of 3-Amino-2-quinoxalinecarbonitrile 1,4-Dioxide and its biological distribution in erhlich ascites cancer bearing mice as a preclinical tumor imaging agent. Radiochemistry 2017, 59, 301–306.10.1134/S1066362217030146Search in Google Scholar

114. Rizvi, S. F. A., Zhang, H., Mehmood, S., Sanad, M. H. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia. Translational Oncology 2020, 13, 100854.10.1016/j.tranon.2020.100854Search in Google Scholar PubMed PubMed Central

115. Sanad, M. H., Hanan, T., Ibrahim, I. T., Gehan, S., Abozaid, L. A. Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptormyocardial perfusion imaging. Radiochim. Acta 2018, 106, 751–757.10.1515/ract-2017-2903Search in Google Scholar

116. Sanad, M. H., Rizvi, F. A., Kumar, R. R., Ibrahim, A. A. Synthesis and preliminary biological evaluation of 99mTc-Tricarbonyl ropinirole as a potential brain imaging agent. Radiochemistry 2019, 61, 754–758.10.1134/S1066362219060195Search in Google Scholar

117. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model. Radiochim. Acta 2021, 109, 477–483.10.1515/ract-2021-0003Search in Google Scholar

118. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, and radiolabeling of heterocyclic bisphosphonate derivative as a potential agent for bone imaging. Radiochemistry 2018, 60, 201–207.10.1134/S106636221802011XSearch in Google Scholar

119. Sanad, M. H., Ibrahim, I.T. Preparation and biological evaluation of 99mTc-Timonacic acid as a new complex for hepatobiliary imaging. Radiochemistry 2017, 59, 92–97.10.1134/S106636221701012XSearch in Google Scholar

120. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Design of novel radiotracer 99mTcN-tetrathiocarbamate as SPECT imaging agent: a preclinical study for GFR renal function. Chemical Papers 2022. https://doi.org/10.1007/s11696-021-01926-y.Search in Google Scholar

121. Sanad, M. H., Marzook, F.A., Rizvi, S.F.A., Farag, A.B., Fouzy, A.S.M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging. Radiochemistry 2021, 63, 520–525.10.1134/S1066362221040160Search in Google Scholar

122. Sanad, M. H., Farag, A. B., Marzook, F. A., Mandal, S. K. Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice. Radiochim. Acta 2022. https://doi.org/10.1515/ract-2021-1105.Search in Google Scholar

123. Sanad, M. H., Farag, A. B., Rizvi, S. F. A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice. Radiochimica Acta 2021, 109, 575–582.10.1515/ract-2020-0125Search in Google Scholar

124. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Sabry, A. B., Alhussein, A. I. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent. Radiochemistry 2021, 63, 833–840.10.1134/S1066362221060163Search in Google Scholar

125. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Mandal, S. K., Patnaik, S. S. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice. Radiochemistry 2021, 63, 811–818.10.1134/S1066362221060138Search in Google Scholar

126. Sanad, M. H., Nermien, M. G., Nermeen, M. E., Ismail, T. I., Ayman, M. Radioiodination of balsalazide, bioevaluation and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice. J. Label Compd. Radiopharm. 2022; https://doi.org/10.1002/JLCR.3961.Search in Google Scholar PubMed

Received: 2021-08-15
Accepted: 2021-12-26
Published Online: 2022-01-31
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2021-1091/html
Scroll to top button