Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 19, 2022

Effect of tungsten on radiation attenuation features of yWO3–(90 − y)TeO2–10Na2O glasses

  • Mohammad Ibrahim Abualsayed and Nouf Almousa EMAIL logo
From the journal Radiochimica Acta

Abstract

In this investigation, the photons shielding factors for tungsten tellurite glasses with the yWO3–(90 − y)TeO2–10Na2O (y = 05, 10, 15 and 20 mol%), were reported. The penetration and attenuation factors for this system at various energies were reported using the Phy-X/PSD program. With increasing energy, it is observed that the linear attenuation coefficient (LAC) values, which range from 1.087–0.234 cm−1 (for TWN1) to 1.354–0.248 cm−1 (for TWN4), decrease exponentially. The LAC values were found to increase with the addition of WO3 from 1.087 to 1.354 cm−1 at 0.245 MeV and from 0.515 to 0.586 cm−1 at 0.444 MeV. Additionally, the greater potential for photon interactions at higher WO3 concentrations was indicated by the findings of the effective atomic number (Zeff) calculation. According to the obtained results, the maximal Zeff occurred at 0.284 MeV, which is equivalent to 32.53 for TWN1 and 36.89 for TWN4. The half value layer (HVL) for the samples under consideration between 0.245 and 1.458 MeV has been determined using the Phy-X/PSD. The HVL results demonstrated that at 0.284 MeV, more gamma rays are shielded whereas the potential of photon shielding decreases as energy increases. The tenth value layer (TVL) increased with rising energy and decreased with rising WO3 concentrations. TVL for TWN4 is the lowest (1.701 cm at 0.245 MeV and 9.284 cm at 1.458 MeV).


Corresponding author: Nouf Almousa, Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia, E-mail:

Acknowledgment

The authors express their gratitude to Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R111), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dong, M., Zhou, S., Xue, X., Feng, X., He, Y., Sayyed, M. I., Tishkevich, D., Trukhanov, A., Almous, N. Upcycling of boron bearing blast furnace slag as highly cost-effective shield for protection of neutron radiation hazard: an innovative way and proposal of shielding mechanism. J. Clean. Prod. 2022, 355, 131817; https://doi.org/10.1016/j.jclepro.2022.131817.Search in Google Scholar

2. Rachniyom, W., Chaiphaksa, W., Limkitjaroeanporn, P., Tuschaoen, S., Sangwaranatee, N., Kaewkhao, J. Effect of Bi2O3 on radiation shielding properties of glasses from coal fly ash. Mater. Today Proc. 2018, 5, 14046–14051; https://doi.org/10.1016/j.matpr.2018.02.059.Search in Google Scholar

3. Kurudirek, M. Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 2017, 727, 1227–1236; https://doi.org/10.1016/j.jallcom.2017.08.237.Search in Google Scholar

4. Tijani, S. A., Al-Hadeethi, Y. The use of isophthalic-bismuth polymer composites as radiation shielding barriers in nuclear medicine. Mater. Res. Express 2019, 6, 055323; https://doi.org/10.1088/2053-1591/ab0578.Search in Google Scholar

5. Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690–12704; https://doi.org/10.1007/s10854-021-05904-8.Search in Google Scholar

6. Sayyed, M. I., Mahmoud, K. A. Simulation of the impact of Bi2O3 on the performance of gamma-ray protection for lithium zinc silicate glasses. Optik 2022, 257, 168861; https://doi.org/10.1016/j.ijleo.2022.168861.Search in Google Scholar

7. Abouhaswa, A. S., Kavaz, E. Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3–Na2O–ZnO–CaO glass system. J. Non-Cryst. Solids 2020, 535, 119993; https://doi.org/10.1016/j.jnoncrysol.2020.119993.Search in Google Scholar

8. Rajesh, M., Esra Kavaz, B., Raju, D. P. Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications. Mater. Res. Bull. 2021, 142, 111383; https://doi.org/10.1016/j.materresbull.2021.111383.Search in Google Scholar

9. Sayyed, M. I., Issa, S. A. M., Tekin, H. O., Saddeek, Y. B. Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 2018, 217, 11–22; https://doi.org/10.1016/j.matchemphys.2018.06.034.Search in Google Scholar

10. Abouhaswa, A. S., Kavaz, E. A novel B2O3–Na2O–BaO–HgO glass system: synthesis, physical, optical and nuclear shielding features. Ceram. Int. 2020, 46, 16166–16177; https://doi.org/10.1016/j.ceramint.2020.03.172.Search in Google Scholar

11. Sayyed, M. I., El-Mesady, I. A., Abouhaswa, A. S., Askin, A., Rammah, Y. S. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3–Bi2O3–PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 2019, 1197, 656–665; https://doi.org/10.1016/j.molstruc.2019.07.100.Search in Google Scholar

12. Rajesh, M., Kavaz, E. Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications. Mater. Res. Bull., 2021, 142, 111383; https://doi.org/10.1016/j.materresbull.2021.111383.Search in Google Scholar

13. Kaewjaeng, S., Chanthima, N., Thongdang, J., Reungsri, S., Kothan, S., Kaewkhao, J. Synthesis and radiation properties of Li2O–BaO–Bi2O3–P2O5 glasses. Mater. Today Proc. 2021, 43, 2544–2553‏; https://doi.org/10.1016/j.matpr.2020.04.615.Search in Google Scholar

14. Chanthima, N., Kaewkhao, J., Limkitjaroenporn, P., Tuscharoen, S., Kothan, S., Tungjai, M., Kaewjaeng, S., Sarachai, S., Limsuwan, P. Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 2017, 137, 72–77; https://doi.org/10.1016/j.radphyschem.2016.03.015.Search in Google Scholar

15. Cheewasukhanont, W., Limkitjaroenporn, P., Kothan, S., Kedkaew, C., Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791; https://doi.org/10.1016/j.radphyschem.2020.108791.Search in Google Scholar

16. Taktak, O., Souissi, H., Kammoun, S. Optical absorption properties of ZnF2–RO–TeO2 (R = Pb, Cd and Zn) glasses doped with chromium (III): neuhauser model and crystal field study. Opt. Mater. 2021, 113, 110682; https://doi.org/10.1016/j.optmat.2020.110682.Search in Google Scholar

17. Kumar, M., Ratnakaram, Y. C. Role of TeO2 coordination with the BaF2 and Bi2O3 on structural and emission properties in Nd3+ doped fluoro phosphate glasses for NIR 1.058 μm laser emission. Opt. Mater. 2021, 112, 110738; https://doi.org/10.1016/j.optmat.2020.110738.Search in Google Scholar

18. Kumar, A., Gaikwad, D. K., Obaid, S. S., Tekin, H. O., Agar, O., Sayyed, M. I. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30 + x)PbO–10WO3–10Na2O–10MgO–(40 − x)B2O3. Prog. Nucl. Energy 2020, 119, 103047; https://doi.org/10.1016/j.pnucene.2019.103047.Search in Google Scholar

19. Mahmoud, I. S., Issa, S. A. M., Saddeek, Y. B., Tekin, H. O., Kilicoglu, O., Alharbi, T., Sayyed, M. I., Erguzel, T. T., Elsaman, R. Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Ceram. Int. 2019, 45, 14058–14072; https://doi.org/10.1016/j.ceramint.2019.04.105.Search in Google Scholar

20. Alsaif, N. A. M., Alotiby, M., Hanfi, M. Y., Mahmoud, K. A., Al-Yousef, H. A., Alotaibi, B. M., Sayyed, M. I., Al-Hadeethi, Y. Comprehensive study of radiation shielding and mechanical features of Bi2O3–TeO2–B2O3–GeO2 glasses. J. Aust. Ceram. Soc. 2021, 57, 1267–1274; https://doi.org/10.1007/s41779-021-00623-z.Search in Google Scholar

21. Şakar, E., Özpolat, V. F., Alım, B., Sayyed, M. I., Kurudirek, M. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496.10.1016/j.radphyschem.2019.108496Search in Google Scholar

22. Kumari, H., Patel, K., Dhiman, S. K., Mahajan, S. K., Ansari, G. F. Studies of structural and optical properties of tungsten tellurite glasses. Mater. Today Proc. 2022, 59, 1127–1131; https://doi.org/10.1016/j.matpr.2022.03.027.Search in Google Scholar

23. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 2004, 71, 653–654; https://doi.org/10.1016/j.radphyschem.2004.04.040.Search in Google Scholar

24. Al-Hadeethi, Y., Sayyed, M. I. X-ray attenuation features of some tellurite glasses evaluated at medical diagnostic energies. Appl. Math. Comput. 2020, 365, 124712; https://doi.org/10.1016/j.amc.2019.124712.Search in Google Scholar

25. Geidam, I. G., Matori, K. A., Halimah, M. K., Chan, K. T., Muhammad, F. D., Ishak, M., Umar, S. A. Oxide ion polarizabilities and gamma radiation shielding features of TeO2–B2O3–SiO2 glasses containing Bi2O3 using Phy-X/PSD software. Mater. Today Commun. 2022, 31, 103472; https://doi.org/10.1016/j.mtcomm.2022.103472.Search in Google Scholar

26. Rammah, Y. S., El-Agawany, F. I., Abu El Soad, A. M., Yousef, E., El-Mesady, I. A. Ionizing radiation attenuation competences of gallium germanate-tellurite glasses utilizing MCNP5 simulation code and Phy-X/PSD program. Ceram. Int. 2020, 46, 22766–22773; https://doi.org/10.1016/j.ceramint.2020.06.043.Search in Google Scholar

27. Akkurt, I., Malidarre, R. B. Physical, structural, and mechanical properties of the concrete by FLUKA code and Phy-X/PSD software. Radiat. Phys. Chem. 2022, 193, 109958; https://doi.org/10.1016/j.radphyschem.2021.109958.Search in Google Scholar

28. Pal Singh, G., Singh, J., Kaur, P., Kaur, S., Arora, D., Kaur, R., Kaur, K., Singh, D. P. Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3–PbO–B2O3 glasses using Phy-X/PSD. J. Mater. Res. 2020, 9, 14425–14442; https://doi.org/10.1016/j.jmrt.2020.10.020.Search in Google Scholar

29. Gunoglu, K., Ozkavak, H. V., Akkurt, I. Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: experimental, XCOM and Phy-X/PSD database software. Mater. Today Commun. 2021, 29, 102793; https://doi.org/10.1016/j.mtcomm.2021.102793.Search in Google Scholar

30. An, J. M., Lin, H., Pun, E. Y. B., Li, D. S. Evaluation of gamma and neutron shielding capacities of tellurite glass system with Phy-X simulation software. Physica B: Phys. Condens. Matter 2022, 634, 413433; https://doi.org/10.1016/j.physb.2021.413433.Search in Google Scholar

31. Sayyed, M. I., Kamıslıogluc, M., Jecong, J. F. M. Investigation of photon attenuation factors for TeO2–Bi2O3–B2O3 glass systems using SRIM codes, EPICS2017 library and Phy-X/PSD. Optik 2022, 257, 168832; https://doi.org/10.1016/j.ijleo.2022.168832.Search in Google Scholar

32. Almuqrin, A. H., Sayyed, M. I. Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A . 2021, 127, 190 https://doi.org/10.1007/s00339-021-04344-9.Search in Google Scholar

33. Obaid, S. S., Gaikwad, D. K., Pravina, P. P. Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 2018, 144, 356–360; https://doi.org/10.1016/j.radphyschem.2017.09.022.Search in Google Scholar

34. Fuochi, P., Corda, U., Lavalle, M., Kovacs, A., Baranyai, M., Mejri, A., arah, K. Dosimetric properties of gamma and electron-irradiated commercial window glasses. Nukleonika 2009, 54, 39–43.Search in Google Scholar

35. Al-Hadeethi, Y., Sayyed, M. I. Evaluation of gamma ray shielding characteristics of CaF2–BaO–P2O5 glass system using Phy-X/PSD computer program. Prog. Nucl. Energy 2020, 126, 103397.10.1016/j.pnucene.2020.103397Search in Google Scholar

36. Gaikwad, D. K., Sayyed, M. I., Obaid, S. S., Issa, S. A. M., Pawar, P. P. Gamma ray shielding properties of TeO2–ZnF2–As2O3–Sm2O3 glasses. J. Alloys Compd. 2018, 765, 451–458; https://doi.org/10.1016/j.jallcom.2018.06.240.Search in Google Scholar

37. Agar, O., Kavaz, E., Altunsoy, E. E., Kilicoglu, O., Tekin, H. O., Sayyed, M. I., Erguzel, T. T., Tarhan, N. Er2O3 effects on photon and neutron shielding properties of TeO2–Li2O–ZnONb2O5 glass system. Results Phys. 2019, 13, 102277; https://doi.org/10.1016/j.rinp.2019.102277.Search in Google Scholar

38. Bashter, I. I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389–1401; https://doi.org/10.1016/s0306-4549(97)00003-0.Search in Google Scholar

Received: 2022-10-03
Accepted: 2022-11-22
Published Online: 2022-12-19
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2022-0101/html
Scroll to top button