Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access April 22, 2020

Graphene-Reinforced Bulk Metal Matrix Composites: Synthesis, Microstructure, and Properties

  • Sara I. Ahmad EMAIL logo , Hicham Hamoudi , Ahmed Abdala , Zafar K. Ghouri and Khaled M. Youssef

Abstract

This paper provides a critical review on the current status of graphene-reinforced metal matrix composites (GRMMCs) in an effort to guide future work on this topic. Metal matrix composites are preferred over other types of composites for their ability to meet engineering and structural demands. Graphene is considered an ideal reinforcement material for composites due to its unique structure and extraordinary physical, thermal, and electrical properties. Incorporating graphene as a reinforcement in metals is a way of harnessing its extraordinary properties, resulting in an enhanced metallic behavior for a wide variety of applications. Combining graphene with bulk metal matrices is a recent endeavor that has proven to have merit. A systematic study is needed to critically examine the efforts applied in this field, the successes achieved, and the challenges faced. This review highlights the three main pillars of GRMMCs: synthesis, structure, and properties. First, it discusses the synthesis techniques utilized for the fabrication of GRMMCs. Then, it highlights the resulting microstructures of the composites, including graphene dispersion and interfacial interactions. Finally, it summarizes the enhancements in the mechanical, electrical, thermal, and tribological properties of GRMMCs, while highlighting the effects of graphene type and content on those enhancements.

References

[1] Nieto, A., A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal. Graphene reinforced metal and ceramic matrix composites: A review. International Materials Reviews, Vol. 62, No. 5, 2017, pp. 241–302.10.1080/09506608.2016.1219481Search in Google Scholar

[2] Jiang, R., X. Zhou, and Z. Liu. Electroless Ni-plated graphene for tensile strength enhancement of copper. Materials Science and Engineering A, Vol. 679, 2017, pp. 323–328.10.1016/j.msea.2016.10.029Search in Google Scholar

[3] Whitener, K. E., Jr., and P. E. Sheehanb. Graphene synthesis. Diamond and Related Materials, Vol. 46, 2014, pp. 25–34.10.1016/j.diamond.2014.04.006Search in Google Scholar

[4] Novoselov, K. S., D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 30, 2005, pp. 10451–10453.10.1073/pnas.0502848102Search in Google Scholar PubMed PubMed Central

[5] Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, Vol. 306, No. 5696, 2004, pp. 666–669.10.1126/science.1102896Search in Google Scholar

[6] Balandin, A. A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Letters, Vol. 8, No. 3, 2008, pp. 902–907.10.1021/nl0731872Search in Google Scholar PubMed

[7] Du, X., I. Skachko, A. Barker, and E. Y. Andrei. Approaching ballistic transport in suspended graphene. Nature Nanotechnology, Vol. 3, No. 8, 2008, pp. 491–495.10.1038/nnano.2008.199Search in Google Scholar PubMed

[8] Lee, C., X. Wei, J. W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, Vol. 321, No. 5887, 2008, pp. 385–388.10.1126/science.1157996Search in Google Scholar

[9] Geim, A. K. Graphene: Status and prospects. Science, Vol. 324, No. 5934, 2009, pp. 1530–1534.10.1126/science.1158877Search in Google Scholar

[10] Nair, R. R., P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, Vol. 320, No. 5881, 2008, p. 1308.10.1126/science.1156965Search in Google Scholar

[11] Rashad, M., F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Progress in Natural Science: Materials International, Vol. 25, 2015, pp. 460-470.10.1016/j.pnsc.2015.09.005Search in Google Scholar

[12] Feng, L., and Z. Liu. Graphene in biomedicine: Opportunities and challenges. Nanomedicine (London), Vol. 6, No. 2, 2011, pp. 317–324.10.2217/nnm.10.158Search in Google Scholar PubMed

[13] Guo, C. X., H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, and C. M. Li. Layered graphene/quantum dots for photovoltaic devices. Angewandte Chemie, Vol. 49, No. 17, 2010, pp. 3014–3017.10.1002/anie.200906291Search in Google Scholar PubMed

[14] Yoon, H. J., J. H. Yang, Z. Zhou, S. S. Yang, and M. M. Cheng. Carbon dioxide gas sensor using a graphene sheet. Sensors and Actuators. B, Chemical, Vol. 157, No. 1, 2011, pp. 310–313.10.1016/j.snb.2011.03.035Search in Google Scholar

[15] Avouris, P., and F. Xia. Graphene applications in electronics and photonics. MRS Bulletin, Vol. 37, No. 12, 2012, pp. 1225–1234.10.1557/mrs.2012.206Search in Google Scholar

[16] Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, Vol. 22, No. 35, 2010, pp. 3906– 3924.10.1002/adma.201001068Search in Google Scholar PubMed

[17] Rashad, M., F. Pan, A. Tang, and M. Asif. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, Vol. 25, 2015, pp. 460-470.10.1016/j.pnsc.2015.09.005Search in Google Scholar

[18] Pérez-Bustamante, R., D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez. Microstructural and hardness behavior of Graphene nanoplatelets/aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds, Vol. 615, Supplement 1, 2014, pp. S578–S582.10.1016/j.jallcom.2014.01.225Search in Google Scholar

[19] Sharma, R., S. Jhap, K. Kakkar, A. Kamboj, and P. Sharma. A review of the aluminium metal matrix composite and its properties. International Research Journal of Engineering and Technology. Vol. 4, 2017, pp. 832-842.Search in Google Scholar

[20] Konakov, V. G., O. Y. Kurapova, I. V. Lomakin, I. Y. Archakov, E. N. Solovyeva, and I. A. Ovid’ko. Fabrication of aluminum-graphene and metal-ceramic nanocomposites. A selective review. Reviews on Advanced Materials Science, Vol. 44, 2016, pp. 361-369.Search in Google Scholar

[21] Hu, Z., G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou. Graphene-reinforced metal matrix nanocomposites – a review. Journal of Materials Science and Technology, Vol. 32, No. 9, 2016, pp. 930–953.10.1080/02670836.2015.1104018Search in Google Scholar

[22] Abdala, A. A. Polymer graphene nanocomposites. Proceedings of the The Sixth Jordan International Chemical Engineering Conference, 2012, Jordan.Search in Google Scholar

[23] Shin, S. E., Y. J. Ko, and D. H. Bae. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Composites. Part B, Engineering, Vol. 106, 2016, pp. 66–73.10.1016/j.compositesb.2016.09.017Search in Google Scholar

[24] Bisht, A., M. Srivastava, R. M. Kumar, I. Lahiri, and D. Lahiri. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Materials Science and Engineering A, Vol. 695, 2017, pp. 20–28.10.1016/j.msea.2017.04.009Search in Google Scholar

[25] Shin, S. E. and D.H. Bae. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites Part A: Applied Science and Manufacturing, Vol. 78, 2015, pp. 42–47.10.1016/j.compositesa.2015.08.001Search in Google Scholar

[26] Alam, S. N., and L. Kumar. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Materials Science and Engineering A, Vol. 667, 2016, pp. 16-32.10.1016/j.msea.2016.04.054Search in Google Scholar

[27] Li, G., and B. Xiong. Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites. Journal of Alloys and Compounds, Vol. 697, 2017, pp. 31–36.10.1016/j.jallcom.2016.12.147Search in Google Scholar

[28] Kim, H., A. A. Abdala, and C. W. Macosko. Graphene/Polymer Nanocomposites. Macromolecules, Vol. 43, No. 16, 2010, pp. 6515–6530.10.1021/ma100572eSearch in Google Scholar

[29] Zeranska-Chudek, K., A. Lapinska, A. Wroblewska, J. Judek, A. Duzynska, M. Pawlowski, A. M. Witowski, and M. Zdrojek. Study of the absorption coefficient of graphene-polymer composites. Scientific Reports, Vol. 8, No. 1, 2018, p. 9132.10.1038/s41598-018-27317-0Search in Google Scholar PubMed PubMed Central

[30] Du, J., and H. M. Cheng. The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics, Vol. 213, No. 10-11, 2012, pp. 1060–1077.10.1002/macp.201200029Search in Google Scholar

[31] Walker, L. S., V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral. Toughening in graphene ceramic composites. ACS Nano, Vol. 5, No. 4, 2011, pp. 3182–3190.10.1021/nn200319dSearch in Google Scholar PubMed

[32] Porwal, H., S. Grasso, and M. Reece. Review of graphene–ceramic matrix composites. Advances in Applied Ceramics, Vol. 112, No. 8, 2013, pp. 443–454.10.1179/174367613X13764308970581Search in Google Scholar

[33] Zhou, M., T. Lin, F. Huang, Y. Zhong, Z. Wang, Y. Tang, H. Bi, D. Wan, and J. Lin. Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. Advanced Functional Materials, Vol. 23, No. 18, 2013, pp. 2263–2269.10.1002/adfm.201202638Search in Google Scholar

[34] Mahale, N. K., and S. T. Ingle. Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy, Vol. 119, 2017, pp. 872–878.10.1016/j.energy.2016.11.053Search in Google Scholar

[35] Liu, Y., Y. Zhu, X. Fan, S. Wang, Y. Li, F. Zhang, G. Zhang, and W. Peng. (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon, Vol. 121, 2017, pp. 163–169.10.1016/j.carbon.2017.05.092Search in Google Scholar

[36] Yu, X., B. Qu, Y. Zhao, C. Li, Y. Chen, C. Sun, P. Gao, and C. Zhu. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries. Chemistry (Weinheim an der Bergstrasse, Germany), Vol. 22, No. 5, 2016, pp. 1638–1645.10.1002/chem.201503897Search in Google Scholar PubMed

[37] Zhu, X., X. Jiang, X. Liu, L. Xiao, X. Ai, H. Yang, and Y. Cao. Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. Ceramics International, Vol. 43, No. 13, 2017, pp. 9630–9635.10.1016/j.ceramint.2017.04.128Search in Google Scholar

[38] Yousef, A., M. H. El-Newehy, S. S. Al-Deyab, and N. A. M. Barakat. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells. Arabian Journal of Chemistry, Vol. 10, No. 6, 2017, pp. 811–822.10.1016/j.arabjc.2016.12.021Search in Google Scholar

[39] Tian, Z., H. Dou, B. Zhang, W. Fan, and X. Wang. Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochimica Acta, Vol. 237, 2017, pp. 109–118.10.1016/j.electacta.2017.03.207Search in Google Scholar

[40] Shabnam, L., S. N. Faisal, A. K. Roy, E. Haque, A. I. Minett, and V. G. Gomes. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, Vol. 221, 2017, pp. 751–759.10.1016/j.foodchem.2016.11.107Search in Google Scholar PubMed

[41] Wei, Y., H. Wang, S. Sun, L. Tang, Y. Cao, and B. Deng. An ultra-sensitive electrochemiluminescence sensor based on reduced graphene oxide-copper sulfide composite coupled with capillary electrophoresis for determination of amlodipine besylate in mice plasma. Biosensors & Bioelectronics, Vol. 86, 2016, pp. 714–719.10.1016/j.bios.2016.07.068Search in Google Scholar PubMed

[42] Hu, X.-S., Y. Shen, Y.-T. Zhang, and J.-J. Nie. Preparation of flower-like CuS/reduced graphene oxide(RGO) photocatalysts for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, Vol. 103, 2017, pp. 201–208.10.1016/j.jpcs.2016.12.021Search in Google Scholar

[43] Zhang, X.-F., Y. Chen, Y. Feng, X. Zhang, J. Qiu, M. Jia, and J. Yao. Facile preparation of Zn0.5Cd0.5S@RGO nanocomposites as efficient visible light driven photocatalysts. Journal of Alloys and Compounds, Vol. 705, 2017, pp. 392–398.10.1016/j.jallcom.2017.02.207Search in Google Scholar

[44] Prashantha Kumar, H. G., and M. Anthony Xavior. Processing and Characterization of Al 6061 – Graphene Nanocomposites. Materials Today: Proceedings, Vol. 4, No. 2, 2017, pp. 3308–3314.10.1016/j.matpr.2017.02.217Search in Google Scholar

[45] Mokhalingam, A., D. Kumar, and A. Srivastava. Mechanical Behaviour of Graphene Reinforced Aluminum Nano composites. Materials Today: Proceedings, Vol. 4, No. 2, 2017, pp. 3952–3958.10.1016/j.matpr.2017.02.295Search in Google Scholar

[46] Borkar, T., H. Mohseni, J. Hwang, T. W. Scharf, J. S. Tiley, S. H. Hong, and R. Banerjee. Excellent strength–ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites. Journal of Alloys and Compounds, Vol. 646, 2015, pp. 135–144.10.1016/j.jallcom.2015.06.013Search in Google Scholar

[47] El-Ghazaly, A., G. Anis, and H.G. Salem. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Composites Part A: Applied Science and Manufacturing, Vol. 95, 2017, pp. 325-336.10.1016/j.compositesa.2017.02.006Search in Google Scholar

[48] Rashad, M., F. Pan, J. Zhang, and M. Asif. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. Journal of Alloys and Compounds, Vol. 646, 2015, pp. 223–232.10.1016/j.jallcom.2015.06.051Search in Google Scholar

[49] Yue, H., L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, and B. Wang. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites. Journal of Alloys and Compounds, Vol. 691, 2017, pp. 755–762.10.1016/j.jallcom.2016.08.303Search in Google Scholar

[50] Reddy, K. S., D. Sreedhar, K. D. Kumar, and G. P. Kumar. Role of Reduced Graphene Oxide on Mechanical-thermal Properties of Aluminum Metal Matrix Nano Composites. Materials Today: Proceedings, Vol. 2, No. 4-5, 2015, pp. 1270–1275.10.1016/j.matpr.2015.07.042Search in Google Scholar

[51] Gao, X., H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technology, Vol. 301, 2016, pp. 601–607.10.1016/j.powtec.2016.06.045Search in Google Scholar

[52] Yang, M., L. Weng, H. Zhu, T. Fan, and D. Zhang. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon, Vol. 118, 2017, pp. 250–260.10.1016/j.carbon.2017.03.055Search in Google Scholar

[53] Li, M., H. Gao, J. Liang, S. Gu, W. You, D. Shu, J. Wang, and B. Sun. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Materials Characterization, Vol. 140, 2018, pp. 172–178.10.1016/j.matchar.2018.04.007Search in Google Scholar

[54] Tabandeh-Khorshid, M., J. B. Ferguson, B. F. Schultz, C.-S. Kim, K. Cho, and P. K. Rohatgi. Strengthening mechanisms of grapheneand Al2O3-reinforced aluminum nanocomposites synthesized by room temperature milling. Materials & Design, Vol. 92, 2016, pp. 79–87.10.1016/j.matdes.2015.12.007Search in Google Scholar

[55] Zhang, H., C. Xu, W. Xiao, K. Ameyama, and C. Ma. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Materials Science and Engineering A, Vol. 658, 2016, pp. 8–15.10.1016/j.msea.2016.01.076Search in Google Scholar

[56] Shin, S. E., H. J. Choi, J. H. Shin, and D. H. Bae. Strengthening behavior of few-layered graphene/aluminum composites. Carbon, Vol. 82, 2015, pp. 143–151.10.1016/j.carbon.2014.10.044Search in Google Scholar

[57] Li, J. L., Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, and S. L. Dai. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Materials Science and Engineering A, Vol. 626, 2015, pp. 400–405.10.1016/j.msea.2014.12.102Search in Google Scholar

[58] Liu, J., U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, and D. Brabazon. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design, Vol. 94, 2016, pp. 87–94.10.1016/j.matdes.2016.01.031Search in Google Scholar

[59] Dasari, B. L., M. Morshed, J. M. Nouri, D. Brabazon, and S. Naher. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Composites. Part B, Engineering, Vol. 145, 2018, pp. 136–144.10.1016/j.compositesb.2018.03.022Search in Google Scholar

[60] Hu, Z., G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, and J. Xu. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Composites. Part B, Engineering, Vol. 93, 2016, pp. 352–359.10.1016/j.compositesb.2016.03.043Search in Google Scholar

[61] Liu, Y., Y. Liu, Q. Zhang, C. Zhang, J. Wang, Y. Wu, P. Han, Z. Gao, L. Wang, and X. Wu. Control of the microstructure and mechanical properties of electrodeposited graphene/Ni composite. Materials Science and Engineering A, Vol. 727, 2018, pp. 133–139.10.1016/j.msea.2018.04.092Search in Google Scholar

[62] Kuang, D., L. Xu, L. Liu, W. Hu, and Y. Wu. Graphene–nickel composites. Applied Surface Science, Vol. 273, 2013, pp. 484–490.10.1016/j.apsusc.2013.02.066Search in Google Scholar

[63] Dutkiewicz, J., P. Ozga, W. Maziarz, J. Pstruś, B. Kania, P. Bobrowski, and J. Stolarska. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Materials Science and Engineering A, Vol. 628, 2015, pp. 124–134.10.1016/j.msea.2015.01.018Search in Google Scholar

[64] ng, L. Yao, X. Lin, B. Wang, and E. Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. Journal of Materials Science and Technology, Vol. 34, No. 10, 2018, pp. 1925-1931.10.1016/j.jmst.2018.02.010Search in Google Scholar

[65] Kavimani, V., and K. S. Prakash. Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. Journal of Physics and Chemistry of Solids, Vol. 110, 2017, pp. 409–419.10.1016/j.jpcs.2017.06.028Search in Google Scholar

[66] Ponraj, N. V., A. Azhagurajan, S. C. Vettivel, X. Sahaya Shajan, P. Y. Nabhiraj, and M. Sivapragash. Graphene nanosheet as reinforcement agent in copper matrix composite by using powder metallurgy method. Surfaces and Interfaces, Vol. 6, 2017, pp. 190–196.10.1016/j.surfin.2017.01.010Search in Google Scholar

[67] Zhao, C. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications. Applied Physics. A, Materials Science & Processing, Vol. 118, No. 2, 2015, pp. 409–416.10.1007/s00339-014-8909-ySearch in Google Scholar

[68] Gao, X., H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Materials & Design, Vol. 94, 2016, pp. 54–60.10.1016/j.matdes.2016.01.034Search in Google Scholar

[69] Ju, J. M., G. Wang, and K.-H. Sim. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. Journal of Alloys and Compounds, Vol. 704, 2017, pp. 585–592.10.1016/j.jallcom.2017.01.314Search in Google Scholar

[70] Kwon, H., J. Mondal, K. A. AlOgab, V. Sammelselg, M. Takamichi, A. Kawaski, and M. Leparoux. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. Journal of Alloys and Compounds, Vol. 698, 2017, pp. 807–813.10.1016/j.jallcom.2016.12.179Search in Google Scholar

[71] Jiang, R., X. Zhou, Q. Fang, and Z. Liu. Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Materials Science and Engineering A, Vol. 654, 2016, pp. 124–130.10.1016/j.msea.2015.12.039Search in Google Scholar

[72] Hwang, J., T. Yoon, S. H. Jin, J. Lee, T. S. Kim, S. H. Hong, and S. Jeon. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, Vol. 25, No. 46, 2013, pp. 6724–6729.10.1002/adma.201302495Search in Google Scholar PubMed

[73] Wang, J., Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, Vol. 66, No. 8, 2012, pp. 594–597.10.1016/j.scriptamat.2012.01.012Search in Google Scholar

[74] Geim, A. K. Graphene prehistory. Physica Scripta, Vol. 2012(T146), 2012, pp. 014003.10.1088/0031-8949/2012/T146/014003Search in Google Scholar

[75] Yin, S., Z. Zhang, E. J. Ekoi, J. J. Wang, D. P. Dowling, V. Nicolosi, and R. Lupoi. Novel cold spray for fabricating graphene-reinforced metal matrix composites. Materials Letters, Vol. 196, 2017, pp. 172–175.10.1016/j.matlet.2017.03.018Search in Google Scholar

[76] Brodie, B. C. On the atomic weight of graphite. Philosophical Transactions, Vol. 149, 1859, pp. 249-259.10.1098/rstl.1859.0013Search in Google Scholar

[77] Hummers, W. S., and R. E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society, Vol. 80, No. 6, 1958, p. 1339.10.1021/ja01539a017Search in Google Scholar

[78] Pei, S., and H.-M. Cheng. The reduction of graphene oxide. Carbon, Vol. 50, No. 9, 2012, pp. 3210–3228.10.1016/j.carbon.2011.11.010Search in Google Scholar

[79] SHANG, Y., D. ZHANG, Y. LIU, and C. GUO. Preliminary comparison of different reduction methods of graphene oxide. Bulletin of Materials Science, Vol. 38, 2015, pp. 7-12.10.1007/s12034-014-0794-7Search in Google Scholar

[80] Johnson, D. W., B. P. Dobson, and K. S. Coleman. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface, Vol. 20, No. 5-6, 2015, pp. 367–382.10.1016/j.cocis.2015.11.004Search in Google Scholar

[81] Jia, X., J. Campos-Delgado, M. Terrones, V. Meunier, and M. S. Dresselhaus. Graphene edges: A review of their fabrication and characterization. Nanoscale, Vol. 3, No. 1, 2011, pp. 86–95.10.1039/C0NR00600ASearch in Google Scholar

[82] Snook, I., and A. Barnard. Physics and Applications of Graphene edited by Dr. Sergey Mikhailov, InTech, 2011, Chapter 13, pp. 277–302.Search in Google Scholar

[83] Han, M. Y., B. Özyilmaz, Y. Zhang, and P. Kim. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, Vol. 98, 2007, pp. 206805.10.1103/PhysRevLett.98.206805Search in Google Scholar

[84] Campos-Delgado, J., J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, and M. Terrones. Bulk production of a new form of sp(2) carbon: Crystalline graphene nanoribbons. Nano Letters, Vol. 8, No. 9, Sep. 2008, pp. 2773–2778.10.1021/nl801316dSearch in Google Scholar

[85] Jiao, L., L. Zhang, X. Wang, G. Diankov, and H. Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature, Vol. 458, No. 7240, Apr. 16, 2009, pp. 877–880.10.1038/nature07919Search in Google Scholar

[86] Avouris, P., and C. Dimitrakopoulos. Graphene: synthesis and applications. Materials Today, Vol. 15, 2012, pp. 86-97.10.1016/S1369-7021(12)70044-5Search in Google Scholar

[87] Shao, P., W. Yang, Q. Zhang, Q. Meng, X. Tan, Z. Xiu, J. Qiao, Z. Yu, and G. Wu. Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 151-162.10.1016/j.compositesa.2018.03.009Search in Google Scholar

[88] Chen, Y., X. Zhang, E. Liu, C. He, Y. Han, Q. Li, P. Nash, and N. Zhao. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism. Journal of Alloys and Compounds, Vol. 688, 2016, pp. 69–76.10.1016/j.jallcom.2016.07.160Search in Google Scholar

[89] Jiang, J., X. He, J. Du, X. Pang, H. Yang, and Z. Wei. In-situ fabrication of graphene-nickel matrix composites. Materials Letters, Vol. 220, 2018, pp. 178–181.10.1016/j.matlet.2018.03.039Search in Google Scholar

[90] Fu, K., X. Zhang, C. Shi, E. Liu, F. He, J. Li, N. Zhao, and C. He. An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Materials Science and Engineering A, Vol. 715, 2018, pp. 108–116.10.1016/j.msea.2017.12.101Search in Google Scholar

[91] Zhong, Y., Z. Zhen, and H. Zhu. Graphene: Fundamental research and potential applications. FlatChem, Vol. 4, 2017, pp. 20–32.10.1016/j.flatc.2017.06.008Search in Google Scholar

[92] Dasari, B. L., J. M. Nouri, D. Brabazon, and S. Naher. Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy, Vol. 140, 2017, pp. 766–778.10.1016/j.energy.2017.08.048Search in Google Scholar

[93] Chu, K., F. Wang, X. Wang, and D. Huang. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Materials Science and Engineering A, Vol. 713, 2018, pp. 269–277.10.1016/j.msea.2017.12.080Search in Google Scholar

[94] Yang, W., Q. Zhao, L. Xin, J. Qiao, J. Zou, P. Shao, Z. Yu, Q. Zhang, and G. Wu. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. Journal of Alloys and Compounds, Vol. 732, 2018, pp. 748–758.10.1016/j.jallcom.2017.10.283Search in Google Scholar

[95] Jiang, Y., Z. Tan, R. Xu, G. Fan, D.-B. Xiong, Q. Guo, Y. Su, Z. Li, and D. Zhang. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Composites Part A: Applied Science and Manufacturing, Vol. 111, 2018, pp. 73-82.10.1016/j.compositesa.2018.05.022Search in Google Scholar

[96] Si, X., M. Li, F. Chen, P. Eklund, J. Xue, F. Huang, S. Du, and Q. Huang. Effect of carbide interlayers on the microstructure and properties of graphene-nanoplatelet-reinforced copper matrix composites. Materials Science and Engineering A, Vol. 708, 2017, pp. 311–318.10.1016/j.msea.2017.10.015Search in Google Scholar

[97] Chen, F., J. Ying, Y. Wang, S. Du, Z. Liu, and Q. Huang. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon, Vol. 96, 2016, pp. 836–842.10.1016/j.carbon.2015.10.023Search in Google Scholar

[98] Khodabakhshi, F., M. Nosko, and A. P. Gerlich. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surface and Coatings Technology, Vol. 335, 2018, pp. 288–305.10.1016/j.surfcoat.2017.12.045Search in Google Scholar

[99] Tabandeh-Khorshid, M., E. Omrani, P. L. Menezes, and P. K. Rohatgi. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J., Vol. 19, No. 1, 2016, pp. 463–469.10.1016/j.jestch.2015.09.005Search in Google Scholar

[100] Kim, W. J., T. J. Lee, and S. H. Han. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon, Vol. 69, 2014, pp. 55–65.10.1016/j.carbon.2013.11.058Search in Google Scholar

[101] Jang, H., S. Yoo, M. Quevedo, and H. Choi. Effect of processing route on mechanical and thermal properties of few-layered graphene (FLG)-reinforced copper matrix composites. Journal of Alloys and Compounds, Vol. 754, 2018, pp. 7–13.10.1016/j.jallcom.2018.04.272Search in Google Scholar

[102] Ghasali, E., P. Sangpour, A. Jam, H. Rajaei, K. Shirvanimoghaddam, and T. Ebadzadeh. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering, Vol. 18, No. 4, 2018, pp. 1042–1054.10.1016/j.acme.2018.02.006Search in Google Scholar

[103] Chen, L. Y., H. Konishi, A. Fehrenbacher, C. Ma, J. Q. Xu, H. Choi, H. F. Xu, F. E. Pfefferkorn, and X. C. Li. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, Vol. 67, No. 1, 2012, pp. 29–32.10.1016/j.scriptamat.2012.03.013Search in Google Scholar

[104] Rashad, M., F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, J. Mao, and J. Magnes. Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys. Alloy., Vol. 1, No. 3, 2013, pp. 242–248.10.1016/j.jma.2013.09.004Search in Google Scholar

[105] Rashad, M., F. Pan, H. Hu, M. Asif, S. Hussain, and J. She. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering A, Vol. 630, 2015, pp. 36–44.10.1016/j.msea.2015.02.002Search in Google Scholar

[106] Rashad, M., F. Pan, A. Tang, M. Asif, J. She, J. Gou, J. Mao, and H. Hu. Development of magnesium-graphene nanoplatelets composite. Journal of Composite Materials, Vol. 49, No. 3, 2014, pp. 285–293.10.1177/0021998313518360Search in Google Scholar

[107] Rashad, M., F. Pan, M. Asif, and A. Tang. Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs). Journal of Industrial and Engineering Chemistry, Vol. 20, No. 6, 2014, pp. 4250–4255.10.1016/j.jiec.2014.01.028Search in Google Scholar

[108] Turan, M. E., Y. Sun, Y. Akgul, Y. Turen, and H. Ahlatci. The effect of GNPs on wear and corrosion behaviors of pure magnesium. Journal of Alloys and Compounds, Vol. 724, 2017, pp. 14–23.10.1016/j.jallcom.2017.07.022Search in Google Scholar

[109] Das, A., and S. P. Harimkar. Effect of Graphene Nanoplate and Silicon Carbide Nanoparticle Reinforcement on Mechanical and Tribological Properties of Spark Plasma Sintered Magnesium Matrix Composites. Materials Science and Technology, Vol. 30, No. 11, 2014, pp. 1059–1070.10.1016/j.jmst.2014.08.002Search in Google Scholar

[110] Rashad, M., F. Pan, and M. Asif. Exploring mechanical behavior of Mg–6Zn alloy reinforced with graphene nanoplatelets. Materials Science and Engineering A, Vol. 649, 2016, pp. 263–269.10.1016/j.msea.2015.10.009Search in Google Scholar

[111] Rashad, M., F. Pan, D. Lin, and M. Asif. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets. Materials & Design, Vol. 89, 2016, pp. 1242–1250.10.1016/j.matdes.2015.10.101Search in Google Scholar

[112] Hu, Z., G. Tong, D. Lin, Q. Nian, J. Shao, Y. Hu, M. Saeib, S. Jin, and G. J. Cheng. Laser sintered graphene nickel nanocomposites. Journal of Materials Processing Technology, Vol. 231, 2016, pp. 143–150.10.1016/j.jmatprotec.2015.12.022Search in Google Scholar

[113] Tang, Y., X. Yang, R. Wang, and M. Li. Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Materials Science and Engineering A, Vol. 599, 2014, pp. 247–254.10.1016/j.msea.2014.01.061Search in Google Scholar

[114] Mu, X. N., H. N. Cai, H. M. Zhang, Q. B. Fan, Z. H. Zhang, Y. Wu, Y. X. Ge, and D. D. Wang. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite. Materials & Design, Vol. 140, 2018, pp. 431–441.10.1016/j.matdes.2017.12.016Search in Google Scholar

[115] Mu, X. N., H. M. Zhang, H. N. Cai, Q. B. Fan, Z. H. Zhang, Y. Wu, Z. J. Fu, and D. H. Yu. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Materials Science and Engineering A, Vol. 687, 2017, pp. 164–174.10.1016/j.msea.2017.01.072Search in Google Scholar

[116] Mu, X. N., H. N. Cai, H. M. Zhang, Q. B. Fan, F. C. Wang, Z. H. Zhang, Y. Wu, Y. X. Ge, S. Chang, R. Shi, Y. Zhou, and D. D. Wang. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Materials Science and Engineering A, Vol. 725, 2018, pp. 541–548.10.1016/j.msea.2018.04.056Search in Google Scholar

[117] Cao, Z., X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, and S. Wang. Reinforcement with graphene nanoflakes in titanium matrix composites. Journal of Alloys and Compounds, Vol. 696, 2017, pp. 498–502.10.1016/j.jallcom.2016.11.302Search in Google Scholar

[118] Yan, S. J., S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen, and Z. M. Lin. Investigating aluminum alloy reinforced by graphene nanoflakes. Materials Science and Engineering A, Vol. 612, 2014, pp. 440–444.10.1016/j.msea.2014.06.077Search in Google Scholar

[119] Bastwros, M., G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites. Part B, Engineering, Vol. 60, 2014, pp. 111–118.10.1016/j.compositesb.2013.12.043Search in Google Scholar

[120] Zhang, Z. W., Z. Y. Liu, B. L. Xiao, D. R. Ni, and Z. Y. Ma. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing. Carbon, Vol. 135, 2018, pp. 215–223.10.1016/j.carbon.2018.04.029Search in Google Scholar

[121] Wang, L., Y. Cui, S. Yang, B. Li, Y. Liu, P. Dong, J. Bellah, G. Fan, R. Vajtai, and W. Fei. Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation. RSC Advances, Vol. 5, 2015, pp. 19321-19328.10.1039/C4RA14255ASearch in Google Scholar

[122] Kim, Y., J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nature Communications, Vol. 4, No. 1, 2013, p. 2114.10.1038/ncomms3114Search in Google Scholar

[123] Liu, X., D. Wei, L. Zhuang, C. Cai, and Y. Zhao. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding. Materials Science and Engineering A, Vol. 642, 2015, pp. 1–6.10.1016/j.msea.2015.06.032Search in Google Scholar

[124] Wang, X., J. Li, and Y. Wang. Improved high temperature strength of copper-graphene composite material. Materials Letters, Vol. 181, 2016, pp. 309–312.10.1016/j.matlet.2016.06.034Search in Google Scholar

[125] Zhang, X., K. Wu, M. He, Z. Ye, S. Tang, and Z. Jiang. Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze-drying and spark plasma sintering. Materials Letters, Vol. 166, 2016, pp. 67–70.10.1016/j.matlet.2015.12.040Search in Google Scholar

[126] Li, J. F., L. Zhang, J. K. Xiao, K. c. Zhou. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Transactions of Nonferrous Metals Society of China, Vol. 25, 2015, pp. 3354-3362.10.1016/S1003-6326(15)63970-XSearch in Google Scholar

[127] Zhang, D., and Z. Zhan. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. Journal of Alloys and Compounds, Vol. 658, 2016, pp. 663–671.10.1016/j.jallcom.2015.10.252Search in Google Scholar

[128] Chu, K., F. Wang, Y. Li, X. Wang, D. Huang, and H. Zhang. Interface structure and strengthening behavior of graphene/CuCr composites. Carbon, Vol. 133, 2018, pp. 127–139.10.1016/j.carbon.2018.03.018Search in Google Scholar

[129] Asgharzadeh, H., and M. Sedigh. Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide. Journal of Alloys and Compounds, Vol. 728, 2017, pp. 47–62.10.1016/j.jallcom.2017.08.268Search in Google Scholar

[130] Rashad, M., F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry, Vol. 23, 2015, pp. 243–250.10.1016/j.jiec.2014.08.024Search in Google Scholar

[131] Song, Y., Y. Chen, W. W. Liu, W. L. Li, Y. G. Wang, D. Zhao, and X. B. Liu. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Materials & Design, Vol. 109, 2016, pp. 256–263.10.1016/j.matdes.2016.07.077Search in Google Scholar

[132] Ashwath, P., and M. A. Xavior. The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Engineering, Vol. 97, 2014, pp. 1027-1032.10.1016/j.proeng.2014.12.380Search in Google Scholar

[133] Hu, Z., F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Y. Chen, and M. Zhang. 3D printing graphene-aluminum nanocomposites. Journal of Alloys and Compounds, Vol. 746, 2018, pp. 269–276.10.1016/j.jallcom.2018.02.272Search in Google Scholar

[134] Zhang, D., and Z. Zhan. Strengthening effect of graphene derivatives in copper matrix composites. Journal of Alloys and Compounds, Vol. 654, 2016, pp. 226–233.10.1016/j.jallcom.2015.09.013Search in Google Scholar

[135] Yang, Z., L. Wang, Z. Shi, M. Wang, Y. Cui, B. Wei, S. Xu, Y. Zhu, and W. Fei. Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength. Carbon, Vol. 127, 2018, pp. 329–339.10.1016/j.carbon.2017.10.095Search in Google Scholar

[136] Wang, L., Y. Cui, B. Li, S. Yang, R. Li, Z. Liu, R. Vajtai, and W. Fei. High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances, Vol. 5, 2015, pp. 51193-51200.10.1039/C5RA04782JSearch in Google Scholar

[137] Ayyappadas, C., A. Muthuchamy, A. Raja Annamalai, and D. K. Agrawal. An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite. Advanced Powder Technology, Vol. 28, No. 7, 2017, pp. 1760– 1768.10.1016/j.apt.2017.04.013Search in Google Scholar

[138] Du, X., W. Du, Z. Wang, K. Liu, and S. Li. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Materials Science and Engineering A, Vol. 711, 2018, pp. 633–642.10.1016/j.msea.2017.11.040Search in Google Scholar

[139] Dixit, S., A. Mahata, D. R. Mahapatra, S. V. Kailas, and K. Chat-topadhyay. Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying. Composites. Part B, Engineering, Vol. 136, 2018, pp. 63–71.10.1016/j.compositesb.2017.10.028Search in Google Scholar

[140] Yolshina, L. A., R. V. Muradymov, I. V. Korsun, G. A. Yakovlev, and S. V. Smirnov. Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties. Journal of Alloys and Compounds, Vol. 663, 2016, pp. 449–459.10.1016/j.jallcom.2015.12.084Search in Google Scholar

[141] Venkatesan, S., and M. Anthony Xavior. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Science and Technology of Materials, Vol. 30, 2018, pp. 74-85.10.1016/j.stmat.2018.02.005Search in Google Scholar

[142] Chen, Y. X., X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao. Fabrication of in-situ grown graphene reinforced Cu matrix composites. Scientific Reports, Vol. 6, 2016, pp. 1-9.10.1038/srep19363Search in Google Scholar

[143] Liu, X., J. Li, J. Sha, E. Liu, Q. Li, C. He, C. Shi, and N. Zhao. In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Materials Science and Engineering A, Vol. 709, 2018, pp. 65–71.10.1016/j.msea.2017.10.030Search in Google Scholar

[144] Liu, G., N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, and C. He. Insitu synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Materials Science and Engineering A, Vol. 699, 2017, pp. 185–193.10.1016/j.msea.2017.05.084Search in Google Scholar

[145] Sruti, A. N., and K. Jagannadham. Electrical Conductivity of Graphene Composites with In and In-Ga Alloy. Journal of Electronic Materials, Vol. 39, No. 8, 2010, pp. 1268–1276.10.1007/s11664-010-1208-2Search in Google Scholar

[146] Meyers, M. A., A. Mishra, and D. J. Benson. Mechanical properties of nanocrystalline materials. Progress in Materials Science, Vol. 51, No. 4, 2006, pp. 427–556.10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[147] Suryanarayana, C. Mechanical alloying and milling. Progress in Materials Science, Vol. 46, No. 1-2, 2001, pp. 1–184.10.1016/S0079-6425(99)00010-9Search in Google Scholar

[148] Mishra, R. S., and Z. Y. Ma. Friction stir welding and processing. Materials Science and Engineering R, Vol. 50, 2005, pp. 1-78.10.1016/j.mser.2005.07.001Search in Google Scholar

[149] Simar, A., Y. Bréchet, B. de Meester, A. Denquin, C. Gallais, and T. Pardoen. Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Progress in Materials Science, Vol. 57, No. 1, 2012, pp. 95–183.10.1016/j.pmatsci.2011.05.003Search in Google Scholar

[150] Liu, Z. Y., B. L. Xiao, W. G. Wang, and Z. Y. Ma. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, Vol. 50, No. 5, 2012, pp. 1843–1852.10.1016/j.carbon.2011.12.034Search in Google Scholar

[151] Ma, Z. Y., A. L. Pilchak, M. C. Juhas, and J. C. Williams. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scripta Materialia, Vol. 58, No. 5, 2008, pp. 361–366.10.1016/j.scriptamat.2007.09.062Search in Google Scholar

[152] Srinivasan, D., R.S. Kadadeveramath, S. Rajendran, and E. N. Ganesh. State-of-art review of ceramic reinforced aluminum metal matrix composite and it’s machining characteristics. Journal of Chemical and Pharmaceutical Sciences, No. 11, 2017, pp. 154-164.Search in Google Scholar

[153] Hu, Z., F. Chen, J. Xu, Z. Ma, H. Guo, C. Chen, Q. Nian, X. Wang, and M. Zhang. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties. Composites. Part B, Engineering, Vol. 134, 2018, pp. 133–140.10.1016/j.compositesb.2017.09.069Search in Google Scholar

[154] Khodabakhshi, F., S. M. Arab, P. Švec, and A. P. Gerlich. Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening. Materials Characterization, Vol. 132, 2017, pp. 92–107.10.1016/j.matchar.2017.08.009Search in Google Scholar

[155] Fadavi Boostani, A., S. Yazdani, R. Taherzadeh Mousavian, S. Tahamtan, R. Azari Khosroshahi, D. Wei, D. Brabazon, J. Z. Xu, X. M. Zhang, and Z. Y. Jiang. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Materials & Design, Vol. 88, 2015, pp. 983–989.10.1016/j.matdes.2015.09.063Search in Google Scholar

[156] Bartolucci, S. F., J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar. Graphene–aluminum nanocomposites. Materials Science and Engineering A, Vol. 528, No. 27, 2011, pp. 7933– 7937.10.1016/j.msea.2011.07.043Search in Google Scholar

[157] Kim, Y., J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nature Communications, Vol. 4, No. 1, 2013, p. 2114.10.1038/ncomms3114Search in Google Scholar PubMed

[158] Feng, S., Q. Guo, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, Z. Tan, J. Zhang, and D. Zhang. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Materialia, Vol. 125, 2017, pp. 98–108.10.1016/j.actamat.2016.11.043Search in Google Scholar

[159] Cao, M., D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity. Carbon, Vol. 117, 2017, pp. 65–74.10.1016/j.carbon.2017.02.089Search in Google Scholar

[160] Wejrzanowski, T., M. Grybczuk, M. Chmielewski, K. Pietrzak, K. J. Kurzydlowski, and A. Strojny-Nedza. Thermal conductivity of metal-graphene composites. Materials & Design, Vol. 99, 2016, pp. 163–173.10.1016/j.matdes.2016.03.069Search in Google Scholar

[161] Chu, K., X. Wang, Y. Li, D. Huang, Z. Geng, X. Zhao, H. Liu, and H. Zhang. Thermal properties of graphene/metal composites with aligned graphene. Materials & Design, Vol. 140, 2018, pp. 85–94.10.1016/j.matdes.2017.11.048Search in Google Scholar

[162] Boden, A., B. Boerner, P. Kusch, I. Firkowska, and S. Reich. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites. Nano Letters, Vol. 14, No. 6, 2014, pp. 3640–3644.10.1021/nl501411gSearch in Google Scholar PubMed

[163] Cao, M., D.-B. Xiong, L. Yang, S. Li, Y. Xie, Q. Guo, Z. Li, H. Adams, J. Gu, T. Fan, X. Zhang, and D. Zhang. Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Advanced Functional Materials, Vol. 29, No. 17, 2019, p. 1806792.10.1002/adfm.201806792Search in Google Scholar

[164] Jin, B., D.-B. Xiong, Z. Tan, G. Fan, Q. Guo, Y. Su, Z. Li, and D. Zhang. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes. Carbon, Vol. 142, 2019, pp. 482–490.10.1016/j.carbon.2018.10.088Search in Google Scholar

[165] Schriver, M., W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano, Vol. 7, No. 7, 2013, pp. 5763–5768.10.1021/nn4014356Search in Google Scholar PubMed

[166] Chen, S., L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, Vol. 5, No. 2, 2011, pp. 1321–1327.10.1021/nn103028dSearch in Google Scholar PubMed

Received: 2019-08-12
Accepted: 2019-12-12
Published Online: 2020-04-22

© 2020 Sara I. Ahmad et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0007/html
Scroll to top button