Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2015

Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites

  • Christopher Igwe Idumah

    Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Engineering Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from The Manchester University, UK, in 2012. While in SPDC Nigeria, he was trained by the Robert Gordon University, Aberdeen, in 2001.

    and Azman Hassan

    Azman Hassan is a professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM) and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His area of research interests include flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

    EMAIL logo

Abstract

Recent advancements in natural fiber-reinforced polymer composites have engineered the need to procure alternatives to replace metals in automotives, construction, aerospace, defense, electronics, and gas and oil industries. However, application versatility of biomaterials has been limited due to poor flame retardancy. In line with the new CO2 emission policy and global ban on halogenated flame retardants, the automotive and aerospace industries require environmentally benign materials with nonhalogenated flame retardancy, that can provide the high FPI, and low FGI, required to reduce fatalities and destruction of properties during real fire situations. Researchers, therefore, postulate that versatility of application of biomaterials can be attained by improving their fire retardant properties. Hence, this paper reviews novel emerging technologies used in achieving flame retardancy in biofibers, biopolymers, biocomposites, and bionanocomposites.


Corresponding author: Azman Hassan, Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia, e-mail:

About the authors

Christopher Igwe Idumah

Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Engineering Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from The Manchester University, UK, in 2012. While in SPDC Nigeria, he was trained by the Robert Gordon University, Aberdeen, in 2001.

Azman Hassan

Azman Hassan is a professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM) and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His area of research interests include flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

Acknowledgments

The authors wish to appreciate the management and authorities of Universiti Teknologi Malaysia for providing facilities for this research and EBSU/TETFUND Nigeria for providing a scholarship to the first author.

References

Abu B, Mohammad M, Mat T, Rozman H, Mohamad J. Flammability and mechanical properties of wood flour reinforced polypropylene composites. J Appl Polym Sci 2010; 116: 2714–2722.Search in Google Scholar

Ahmad R, Rahimi S, Frouchi M, Radman S. Investigation of flame retardancy and physical mechanical properties of zinc borate and aluminium hydroxide propylene composites. Mater Des 2008; 29: 1051–1056.10.1016/j.matdes.2007.04.003Search in Google Scholar

Alongi J, Mihaela C, Giulio M. Novel flame retardant finishing systems for cotton fabrics based on phosphorous-containing compounds and silica derived from sol-gel processes. Carbohydrate Polymers 2011; 85: 599–608.10.1016/j.carbpol.2011.03.024Search in Google Scholar

Alongi J, Brancatelli G, Rosace G. Thermal properties and combustion behavior of POSS- and bohemite-finished cotton fabrics. J Appl Polym Sci 2012a; 123: 426–436.10.1002/app.34476Search in Google Scholar

Alongi J, Carosi F, Malucelli G. Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester cotton blends: flammability and combustion behavior. Cellulose 2012b; 19: 1041–1050.10.1007/s10570-012-9682-8Search in Google Scholar

Alongi J, Mihaela C, Giulio M. Thermal stability, flame retardancy, and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol-gel processes. Carbohydr Polym 2012c; 87: 2093–2099.10.1016/j.carbpol.2011.10.032Search in Google Scholar

Alongi J, Carosio F, Horrocks A, Malucelli G, editors. Update on flame retardant textiles: state of the art, environmental issues and innovative solutions, chapter 2: fundamental aspects of flame retardancy. Shawbury, Shrewsbury, Shropshire (UK): Smithers RAPRA Publishing, 2013; ISBN 978-1-90903-017-6.Search in Google Scholar

Alongi J, Blasio D, Cuttica F, Carosio F, Malucelli G. Bulk or surface treatments of ethylene vinyl acetate copolymers with DNA: investigation on the flame retardant properties. Eur Polym J 2014a; 51: 112–119.10.1016/j.eurpolymj.2013.12.009Search in Google Scholar

Alongi J, Carletto R, Bosco F, Carosio F, Blasio A, Cuttica F, Antonucci V, Giordani M, Malucelli G. Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 2014b; 99: 111–117.10.1016/j.polymdegradstab.2013.11.016Search in Google Scholar

Alongi J, Cuttica F, Blasio AD, Carosio F, Malucelli G. Intumescent features of nucleic acids and proteins. Thermochim Acta 2014c; 591: 31–39.10.1016/j.tca.2014.06.020Search in Google Scholar

Alongi J, Blasio AD, Milnes J, Malucelli G, Bourbigot S, Kandola B, Camino G. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab 2015; 113: 110–118.10.1016/j.polymdegradstab.2014.11.001Search in Google Scholar

Amri F, Husseinsyah S, Hussin K. Mechanical, morphology and thermal properties of chitosan filled polypropylene/rice husks ash composites. The effect of binary modifying agents. Compos Part A 2013; 46: 89–95.10.1016/j.compositesa.2012.10.014Search in Google Scholar

Apaydin K. Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D. Polyallylamine-montmorillonite multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir 2013; 27: 13879–13887.10.1021/la203252qSearch in Google Scholar PubMed

Arao Y, Nakamu S, Tanaka Y, Kyouhei T, Toshikazu U, Tatsuya T. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polym Degrad Stab 2014; 100: 79–85.10.1016/j.polymdegradstab.2013.12.022Search in Google Scholar

Avella M, Bogoeva-Gaceva B, Buzarovska A, Errico M, Grozdanor A. Poly (lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 2008; 108: 3542–3551.10.1002/app.28004Search in Google Scholar

Avila, AF, Dias EC, Cruz DT. An investigation on graphene and nanoclays effects on hybrid nanocomposites post fire dynamic behavior. Mater Res 2010; 13: 143–150.10.1590/S1516-14392010000200005Search in Google Scholar

Biswal M, Mohanty S, Nayak S. Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 2012; 125: 432–443.10.1002/app.35246Search in Google Scholar

Bocz K, Szolnoki M, Wladyka-Przybylak M, Bujnowicz G, Harakaly B, Zimony E, Toldy A, Marosi G. Flame retardancy of biocomposites based on thermoplastic starch. Polimery 2013; 58: 385–394.10.14314/polimery.2013.385Search in Google Scholar

Bocz K, Domonkos M, Igricz T, Kmetty A, Barany T, Marosi G. Flame retarded self- reinforced poly (lactic acid) composites of outstanding impact resistance. Compos Part A Appl Sci Manuf 2015; 70: 27–34.10.1016/j.compositesa.2014.12.005Search in Google Scholar

Boonchoat P, Piyarat J, Worawan B. Graft polymerization coating of methacryloyloxyethyl diphenyl phosphate flame retardant onto silk surface. Prog Org Coat 2014; 77: 1585–1590.10.1016/j.porgcoat.2014.01.023Search in Google Scholar

Borysiak S, Paukszta D, Malgorzata H. Flammability of wood polypropylene composites. Polym Degrad Stab 2006; 91: 3339–3343.10.1016/j.polymdegradstab.2006.06.002Search in Google Scholar

Bourbigot S, Fointaine G. Flame retardancy of polylactide: an overview. Polym Chem 2010; 1: 1413–1422.10.1039/c0py00106fSearch in Google Scholar

Bourbigot S, Fontaine G, Gallos A, Bellayer S. Reactive extrusion of PLA and ofPLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol 2011; 22: 30–37.10.1002/pat.1715Search in Google Scholar

Carosio F, Laufer G, Alongi J, Camino G, Grunlan J. Layer by layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 2011; 96: 745–750.10.1016/j.polymdegradstab.2011.02.019Search in Google Scholar

Carosi F, Alongi J, Malucelli G. Layer by Layer complex architectures based on ammonium polyphosphate based coatings for flame retardancy of polyester cotton blends. Carbohydr Polym 2012; 88: 1460–1469.10.1016/j.carbpol.2012.02.049Search in Google Scholar

Carosio F, Di BA, Alongi J, Malucelli G. Layer by Layer nano-architectures for the surface protection of polycarbonate. Eur Polym J 2013a; 49: 397–404.10.1016/j.eurpolymj.2012.10.032Search in Google Scholar

Carosio F, Blasio AD, Alongi J, Malucelli G. Green DNA based flame retardant coatings assembled through layer by layer. Polymer 2013b; 54: 5148–5153.10.1016/j.polymer.2013.07.029Search in Google Scholar

Carosio F, Alongi J, Blasio AD, Cuttica F, Malucelli G. Flame retardancy of polyester and polyester-cotton blends with treated caseins. Ind Eng Chem Res 2014; 53: 3917–3923.10.1021/ie404089tSearch in Google Scholar

Chai M, Bickerton S, Bhattacharyya D, Das R. Influence of natural fiber reinforcement on the flammability of bio-derived composite materials. Compos Part B 2012; 43: 2867–2874.10.1016/j.compositesb.2012.04.051Search in Google Scholar

Chang S, Zeng C, Yuan W, Ren J. Preparation and characterization of double layered microencapsulated red phosphorous and its flame retardance in poly (lactic acid). J Appl Polym Sci 2012; 125: 3014–3022.10.1002/app.36449Search in Google Scholar

Chapple S, Anandjiwala R. Flammability of natural fiber reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 2010; 23: 871–893.10.1177/0892705709356338Search in Google Scholar

Cheaptubes.com. www.cheaptubes.com.Search in Google Scholar

Chen D, Li J, Ren J. Combustion properties and transference behavior of ultrafine microencapsulated ammonium polyphosphate in ramie fabric-reinforced poly (L-lactic acid) biocomposites. Polym Int 2011; 60: 599–606.10.1002/pi.2986Search in Google Scholar

Cipiriano B, Kashiwagi T, Raghavan S, Yang Y, Grulke A, Yamamoto K. Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 2007; 48: 6086–6096.10.1016/j.polymer.2007.07.070Search in Google Scholar

Cireli A, Onar N. Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. J Appl Polym Sci 2008; 109; 1: 97–105.10.1002/app.27284Search in Google Scholar

Costes L, Laoutid F, Dumazert L, Lopez-Cuesta JM, Brohez S, Delvosalle C, Dubois P. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly (lactic acid). Polym Degrad Stab 2015; 119: 217–227.10.1016/j.polymdegradstab.2015.05.014Search in Google Scholar

Darder M, López-Blanco M, Aranda P, Leroux F, Ruiz-Hitzky E. Bio-Nanocomposites based on layered double hydroxides. Chem Mater 2005; 17: 1969–1977.10.1021/cm0483240Search in Google Scholar

Darder M, Aranda P, Ruiz-Hitzky, E. Bionanocomposites: a new concept of ecological, bio-inspired, and functional hybrid materials. Adv Mater 2007; 19: 1309–1319.10.1002/adma.200602328Search in Google Scholar

Das K, Ray S, Chapple S, Wesley S. Mechanical, thermal and fire properties of biodegradable polylactide/boehmite alumina composites. Ind Eng Chem Res 2013; 52: 6083–6091.10.1021/ie4004305Search in Google Scholar

Dorez G, Taguet A, Ferry L, Lopez-Cuesta J. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 2013: 98: 87–95.10.1016/j.polymdegradstab.2012.10.026Search in Google Scholar

Duguay A, Nader J, Kizilitas A, Gardner D, Dagher J. Exfoliated graphite nanoplatelets-filled impact modified polypropylene composites: influence of particle diameter, filler loading, and coupling agent on mechanical properties. Appl Nanosci 2007; 4: 279–291.10.1007/s13204-013-0204-2Search in Google Scholar

Eberhad B, Anna U. DSC study of syndiotic polypropylene/organoclay nanocomposite fiber: crystallization and melting behavior. Int J Polym Mater Polym Biomater 2007; 56: 771–778.10.1080/00914030601163399Search in Google Scholar

El-Shafei A, ElShemy M, Abou-Okeil A. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 2015 118; 83–90.10.1016/j.carbpol.2014.11.007Search in Google Scholar PubMed

Farag Z, Kruger S, Hidde G, Schmanski A, Jagger C, Frederick J. Deposition of thick polymer or inorganic layers with flame retardant properties by combination of plasma and spray processes. Surf Coat Technol 2006; 201: 2599–2610.Search in Google Scholar

Faruk O, Bledzki A, Fink H, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progr Polym Sci 2012; 37: 1552–1596.10.1016/j.progpolymsci.2012.04.003Search in Google Scholar

Fox D, Lee J, Citro C. Novy M. Flame retarded poly (lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym Degrad Stab 2013; 98: 590–596.10.1016/j.polymdegradstab.2012.11.016Search in Google Scholar

Fox D, Novy M, Brown K, Zammarano M, Harris R, Murariu M. Flame retarded poly (lactic acid) using POSS-modified cellulose. 2. Effect of intumescing flame retardant formulations on polymer degradation and composite physical properties. Polym Degrad Stab 2014; 106: 54–62.10.1016/j.polymdegradstab.2014.01.007Search in Google Scholar

Frone A, Berlioz S, Chailan J, Panaitescu D. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 2013; 91: 377–384.10.1016/j.carbpol.2012.08.054Search in Google Scholar PubMed

Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on MMT and sepiolite. Mater Sci Eng C 2009; 29: 1433–1441.10.1016/j.msec.2008.11.005Search in Google Scholar

Gallo E, Schartel B, Acierno D, Russo P. Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J 2011; 47: 1390–1401.10.1016/j.eurpolymj.2011.04.001Search in Google Scholar

Gallo E, Schartel B, Acierno D, Cimino F, Russo P. Tailoring the flame retardant and mechanical performances of natural fiber reinforced biopolymer multi-component laminate. Compos Part B, 2013; 44: 112–119.10.1016/j.compositesb.2012.07.005Search in Google Scholar

Gallos A, Fontaine G, Bourbigot S. Reactive extrusion of intumescent stereocomplexed poly-L, D-lactide: characterization and reaction to fire. Polym Adv Technol 2013; 24: 130–133.10.1002/pat.3058Search in Google Scholar

Gang B, Chuigen G, Liping L. Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame retardant properties of wood flour. Polypropylene composites. Constr Build Mater 2014; 50: 148–153.Search in Google Scholar

Gogoi P, Boruah M, Bora C, Dolui S. Jatropha curcas oil based alkyd/epoxy resin/expanded graphite (EG) reinforced biocomposite: evaluation of the thermal, mechanical and flame retardancy properties. Prog Org Coat 2014; 77: 87–93.10.1016/j.porgcoat.2013.08.006Search in Google Scholar

Gong J, Tian N, Wen X, Chen X, Liu J, Jiang Z, Mijowska E, Tang T. Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). Polym Degrad Stab 2014; 104: 18–27.10.1016/j.polymdegradstab.2014.03.030Search in Google Scholar

Goriparthi B, Suman K, Rao N. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/Jute composites. An overview about mechanical characteristics and application areas. Compos Part A Appl Sci Manuf 2012; 43: 1800–1808.10.1016/j.compositesa.2012.05.007Search in Google Scholar

Hamid M, Ghani M, Ahmad S. Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and saw dust. Ind Crops Prod 2012; 40: 96–102.10.1016/j.indcrop.2012.02.019Search in Google Scholar

Han SO, Karevan M, Bhuiyan M, Park H, Kalaitzidou K. Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly (lactic acid) biocomposites reinforced with kenaf fibers. J Mater Sci 2012; 47: 3535–3543.10.1007/s10853-011-6199-8Search in Google Scholar

Hapuarachchi T, Peijs T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fiber reinforced composites. Compos Part A 2010; 41: 954–963.10.1016/j.compositesa.2010.03.004Search in Google Scholar

Hassan A, Atikah I. Kenaf and rice husks filled polypropylene composites containing ammonium polyphosphate. Paper proceeding for 8th Asian-Australian Conference on composite Materials 2013 (ACCM-8).Search in Google Scholar

Hassouna F, Raquez J, Addiego F, Dubois P, Toniazzo V, Ruch D. New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 2011; 47: 2134–2144.10.1016/j.eurpolymj.2011.08.001Search in Google Scholar

Hazarika A, Deka B, Maji T. Melamine-formaldehyde acrylamide and gum polymer impregnated wood polymer nanocomposite. J Bionic Eng 2015; 12: 304–315.10.1016/S1672-6529(14)60123-2Search in Google Scholar

Hemmati F, Garmabi H. A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. J Thermoplast Compos Mater 2012; 26: 1041–1056.10.1177/0892705711433350Search in Google Scholar

Henrik S, Ulrike B. A new flame retardant for wood materials tested in wood plastic composites. Macromol Mater Eng 2012; 297: 814–820.10.1002/mame.201100382Search in Google Scholar

Higginbotham AL, Morgan AB, Tour JM. Graphene oxide flame –retardant polymer nanocomposites. ACS Appl Mater Interfaces 2009; 1: 2256–2261.10.1021/am900419mSearch in Google Scholar PubMed

Hong N, Song L, Wang B, Stec A, Hull T, Zhan J. Co-precipitation synthesis of reduced graphene oxide/NiAl layered double hydroxide hybrid and its application in flame retarding polymethyl methacrylate. Mater Res Bull 2014; 49: 657–664.10.1016/j.materresbull.2013.09.051Search in Google Scholar

Huang K, Nien Y, Hsiao K, Chang Y. Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J Appl Polym Sci 2006; 102: 4136–4143.10.1002/app.24246Search in Google Scholar

Huang G, Liang H, Wang X, Gao J. Poly (acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind Eng Chem Res 2012; 51: 12299–12309.10.1021/ie300820kSearch in Google Scholar

Hussain F, Mehdi H, Okamoto M, Gorga RE. Review article: polymer matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 2006; 40: 1511–1575.10.1177/0021998306067321Search in Google Scholar

Idumah CI, Hassan A, Affam AC. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 2015; 31: 149–177.10.1515/revce-2014-0038Search in Google Scholar

Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MK, Wong SI, Jawaid M. Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terepthalate/polypropylene nanocomposites. Polym Degrad Stab 2014; 110: 137–148.10.1016/j.polymdegradstab.2014.08.025Search in Google Scholar

Ishidi E, Adamu K, Sunmonu K. Flammability and thermal characteristics of alkaline aqueous solution treated groundnut shell-HDPE composites. Thermoplast Compos Mater 2011; 24: 875–888.10.1177/0892705711409550Search in Google Scholar

Jang J, Jeong T, Oh H, Young J, Song Y. Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos Part B 2012; 43: 2434–2438.10.1016/j.compositesb.2011.11.003Search in Google Scholar

Jeencham R, Suppakam N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos Part B: Eng 2014; 56: 249–253.10.1016/j.compositesb.2013.08.012Search in Google Scholar

Jian X, Sheng P, Jin Z. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym Adv Technol 2011; 22: 1115–1122.10.1002/pat.1954Search in Google Scholar

Jing Z, Lei S, Shibin N, Yuan H. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 2009; 94: 291–296.10.1016/j.polymdegradstab.2008.12.015Search in Google Scholar

Kahramana HT, Gevgililic H, Pehlivand E, Kalyona DM. Development of an epoxy based intumescent system comprising of nanoclays blended with appropriate formulating agents. Prog Org Coat 2015; 78: 208–219.10.1016/j.porgcoat.2014.09.002Search in Google Scholar

Kale E. The eco-friendly car is driving engineering plastics market to $76 billion by 2017. Engineering-plastics-market-to-76-bi#VRkDTSm6J5LpjbcK.99.Last visited on 12 January, 2014.Search in Google Scholar

Kamlangkla K, Hodak K, Levaois-Grutzmacher J. Multifunctional silk fabrics by means of plasma induced graft polymerization (PIGP) process. Surf Coat Technol 2011; 205: 3755–3762.10.1016/j.surfcoat.2011.01.006Search in Google Scholar

Kandola BK, Krishnan L, Ebdon J. Blends of unsaturated polyester and phenolic resins for applications as fire-resistant matrices in fiber reinforced composites: effects of added flame retardants. Polym Degrad Stab 2014; 106: 129–137.10.1016/j.polymdegradstab.2013.12.021Search in Google Scholar

Karevan M, Kyriaki K. Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites. Compos Interfaces 2013; 20: 255–268.10.1080/15685543.2013.795752Search in Google Scholar

Karter MJ. Jr. Fire loss in the United States during 2013. NFPA, Quincy, MA: Fire Analysis and Research Division, 2014.Search in Google Scholar

Katalin B, Beata S, Attila M, Tamas T, Maria W. Flax fiber reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab 2014; 106: 63–73.10.1016/j.polymdegradstab.2013.10.025Search in Google Scholar

Kefan KM. Polymeric nanocomposites: a review. Polym Plastic Technol Eng 2014; 43: 427–443.Search in Google Scholar

Kim YS, Davis R, Cain A, Grulan J. Development of layer by layer assembled carbon nanofiber filled coatings to reduce polyurethane foam flammability. Polymer 2011; 52: 2847–2855.10.1016/j.polymer.2011.04.023Search in Google Scholar

Kongliang X, Aiqin G, Yongsheng Z. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym B 2013; 98: 706–710.10.1016/j.carbpol.2013.06.014Search in Google Scholar PubMed

Kozlowski R, Wladyka-Przybylak M. Review: flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 2008; 19: 446–453.10.1002/pat.1135Search in Google Scholar

Kumar V, Singh A. Polypropylene clay nanocomposites. Rev Chem Eng 2013; 29: 439–448.10.1515/revce-2013-0014Search in Google Scholar

Kumar R, Yakabu M, Anandjiwala I. Effect of montmorillonite clay on flax fabric reinforced polylactic acid composites with amphiphilic additives. Compos Part A Appl Sci Manuf 2010; 41: 1620–1627.10.1016/j.compositesa.2010.07.012Search in Google Scholar

Laachachi A, Ball V, Apaydin K, Toniazzo V, Ruch D. Diffusion of polyphosphates into (poly (allylamine)-montmorillonite) multilayer films; flame retardant-intumescent films with improved oxygen barrier. Langmuir 2011; 27: 13879–13887.10.1021/la203252qSearch in Google Scholar PubMed

Laoutid F, Bonnaud L, Morgan A, Lopez-Cuesta J, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng Res 2009; 63: 100–125.10.1016/j.mser.2008.09.002Search in Google Scholar

Laufer G, Kirklan C, Cain A, Grulan J. Clay-chitosan nano-brick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 2012a: 4: 1643–1649.10.1021/am2017915Search in Google Scholar PubMed

Laufer G, Kirkland C, Morgan BA, Grunlan JC. Intumescent all polymer multilayer nano-coating made with renewable polyelectrolytes, for flame retardant cotton. Biomacromolecules 2012b; 13: 2843–2848.10.1021/bm300873bSearch in Google Scholar PubMed

Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet M, Talon O. Flame retardant treatments of insulating agro materials from flax short fibers. Polym Degrad Stab 2013; 98: 1043–1051.10.1016/j.polymdegradstab.2013.02.002Search in Google Scholar

Le Bras M, Duquesne S, Fois M, Grisel M, Poutch F. Intumescent polypropylene/flax blends: a preliminary study. Polym Degrad Stab 2004; 88: 80–84.10.1016/j.polymdegradstab.2004.04.028Search in Google Scholar

Li Y, Schulz J, Grunlan J. Polyelectrolyte/nanosilicate thin-film assemblies: influence of ph on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 2009; 1: 2338–2347.10.1021/am900484qSearch in Google Scholar PubMed

Li Y, Schulz J, Grunlan J, Mannen S, Delhom C, Condon B, Chang S. Flame retardant behavior of polyelectrolyte clay thin assemblies on cotton fabric. ACS Nano 2010; 4: 3325–3337.10.1021/nn100467eSearch in Google Scholar PubMed

Li N, Yan H, Xia L, Mao L, Fang Z, Song Y, Wang H. Flame retarding and reinforcing modification of ramie/polybenzoxazine composites by surface treatment of ramie fabric. Compos Sci Technol 2015; 2: 1–7.10.1016/j.compscitech.2015.08.008Search in Google Scholar

Liga F, Silvija K, Martins A, Edgars B, Jan G. Flammability of raw insulation materials made of hemp. Compos Part B 2014; 67: 510–557.10.1016/j.compositesb.2014.08.007Search in Google Scholar

Liu XG. How will carbon material lead to a low carbon society – a review of carbon. Carbon 2012; 51: 435–438.Search in Google Scholar

Liu X, Wang D, Wang X, Chen L, Wang Y. Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR Poly (lactide acid) systems. Polym Degrad Stab 2008; 96: 771–777.10.1016/j.polymdegradstab.2011.02.022Search in Google Scholar

Lowden L, Hull T. Flammability behavior of wood and a review of the methods for its reduction. Fire Sci Rev 2013; 2: 4–10.10.1186/2193-0414-2-4Search in Google Scholar

Mahltig B, Fiedler D, Böttcher H. Antimicrobial sol gel coatings. J Sol-Gel Sci Technol 2004; 32: 219–222.10.1007/s10971-004-5791-7Search in Google Scholar

Majeed Z, Ramli N, Mansor N, Man Z. A comprehensive review on biodegradable polymers and their blends used in controlled release fertilizer processes. Rev Chem Eng 2015; 31: 69–95.10.1515/revce-2014-0021Search in Google Scholar

Malucelli G, Carosio F, Alongi J, Fina A, Frache A, Camino G. Materials engineering for surface – confined flame retardancy. Mater Sci Eng R 2014; 84: 1–20.10.1016/j.mser.2014.08.001Search in Google Scholar

Marney D, Russell L, Wu D, Nguyen T, Cramm D, Rigopoulos N, Wrigth N, Greaves M. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 2008; 93; 1971–1978.10.1016/j.polymdegradstab.2008.06.018Search in Google Scholar

Martirosyan K, Dhen K, Luss D. Behavior features of soot combustion in diesel particulate filter. Chem Eng Sci 2010; 65: 42–46.10.1016/j.ces.2009.01.058Search in Google Scholar

Matkó S, Toldy A, Keszei S, Anna P, Bertalan G, Marosi G. Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 2005; 88: 138–145.10.1016/j.polymdegradstab.2004.02.023Search in Google Scholar

Mfiso E, Mayal J, Valencia J, Adrian S. Review on flammability of biofibres and biocomposites. Carbohydr Polym 2014; 111: 149–182.10.1016/j.carbpol.2014.03.071Search in Google Scholar PubMed

Mingzhu P, Hailan L, Changtong M. Flammabilty of nano silicon dioxide-wood fiber-polyethylene composites. J Compos Mater 2013; 47: 1471–1477.10.1177/0021998312448499Search in Google Scholar

Moafi H, Mostashari S. Flame-resistant polymeric composite fibers based on nanocoating flame retardant: thermogravimetric study and production of α-Al2O3 nanoparticles by flame combustion. J Polym Eng 2014; 34: 805–812.10.1515/polyeng-2013-0176Search in Google Scholar

Montero B, Bellas R, Ramirez C, Rico M, Bouza R. Flame retardancy and thermal stability of organic-inorganic hybrid resins based on polyhedral oligomeric silsesquioxanes and montmorillonite clay. Compos Part B 2014; 63: 67–76.10.1016/j.compositesb.2014.03.023Search in Google Scholar

Morgan AB. Flame retardant polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 2006; 17: 206–217.10.1002/pat.685Search in Google Scholar

Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology and future directions. Fire Mater 2013; 37: 213–229.Search in Google Scholar

Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 2010; 95: 889–900.10.1016/j.polymdegradstab.2009.12.019Search in Google Scholar

Mustapha S, Rahmat A, Arsad A. Biobased thermoset nanocomposite derived from vegetable oil: a short review. Rev Chem Eng 2013; 30: 167–182.Search in Google Scholar

Nadir A, Turgay A, Turker D, Robert W, Faith M, Umit B. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Construction and Building Materials 2012; 33: 63–69.10.1016/j.conbuildmat.2012.01.013Search in Google Scholar

Najafi A, Kord B, Adi A, Ranaee S. The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/ reed flour nanocomposites. Journal of Thermoplast Compos Mater 2012; 25: 717–733.10.1177/0892705711412813Search in Google Scholar

Nayak K, Mohanty S, Samal K. Hybridization effect of glass fiber on mechanical, morphological, and thermal properties of polypropylene-bamboo/glass fiber hybrid composites. Polym Polym Compos 2010; 18: 205–218.Search in Google Scholar

Nicole M, Robert H, Scott A, Tim A. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polym Degrad Stab 2010; 95: 1903–1910.10.1016/j.polymdegradstab.2010.04.014Search in Google Scholar

Nie S, Song L, Guo Y, Wu K, Xing W, Lu H, Hu Y. Intumescent flame retardation of starch containing polypropylene semi-biocomposites: flame retardancy and thermal degradation. Ind Eng Chem Res 2009; 48: 10751–10758.10.1021/ie9012198Search in Google Scholar

Oksman K, Mathew A, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 2006; 66: 2776–2784.10.1016/j.compscitech.2006.03.002Search in Google Scholar

Paluvai NS, Mohanty S, Nayak SK. Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. J Appl Polym Sci 2015; 132: 42068–42083.10.1002/app.42068Search in Google Scholar

Pan M, Mei C, Song Y. A novel fire retardant affects fire performance and mechanical properties of wood flour – high density polyethylene composites. Bioresources 2012; 7: 7–12.10.15376/biores.7.2.1760-1770Search in Google Scholar

Pan J, Mu J, Wu Z, Zhang X. Effect of nitrogen-phosphorous fire retardant blended with Mg(OH)2/Al(OH)3 and nano SiO2 on fire retardant behavior and hygroscopidity of poplar. Fire Mater 2014; 38: 817–826.10.1002/fam.2224Search in Google Scholar

Pandele A, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films. Carbohydr Polym 2014; 102: 813–820.10.1016/j.carbpol.2013.10.085Search in Google Scholar PubMed

Poon C-K, Kan C-W. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 2015; 121: 457–467.10.1016/j.carbpol.2014.11.064Search in Google Scholar PubMed

Quan H, Bao-qing Z, Zhao Q, Yuen KKR, Li RKY. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part A Appl Sci Manuf 2009; 40: 1506–1513.10.1016/j.compositesa.2009.06.012Search in Google Scholar

Ren J, Li S, Yuan H, Yu YW. Flame retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on polylactic acid. Polym Adv Technol 2012; 60: 114–112.Search in Google Scholar

Ren Y, Wang Y, Wang L, Liu T. Evaluation of intumescent fire retardants and synergistic agents for use in wood flour/recycled polypropylene composites. Constr Build Mater 2015; 76: 273–278.10.1016/j.conbuildmat.2014.12.004Search in Google Scholar

Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R. Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 2008; 19: 628–635.10.1002/pat.1130Search in Google Scholar

Rozman H, Musa L, Azinwati A, Rozyanty A. Tensile properties of kenaf unsaturated polyester composites filled with montmorillonite filler. J Appl Polym Sci 2010; 119: 2549–2553.10.1002/app.32096Search in Google Scholar

Rozyanty A, Rozman D, Tay G. Ultra-violet radiation cured composites based on unsaturated polyester resin filled with MMT and kenaf bast fiber. Adv Mater Res 2011; 264–265: 712–718.10.4028/www.scientific.net/AMR.264-265.712Search in Google Scholar

Rybinski P, Janowska G, Jozwiak M, Pajak A. Thermal properties and flammability of nanocomposites based on diene rubbers and naturally occurring and activated halloysite nanotubes. J Therm Anal Calorim 2012; 107: 1243–1249.10.1007/s10973-011-1787-zSearch in Google Scholar

Ryszard K, Maria WP. Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 2008; 19: 446–453.10.1002/pat.1135Search in Google Scholar

Saihua J, Zhou G, Yongqian S, Keqing Z, Bihe Y, Chenlu B. Bismuth sub-carbonate nanoplatelets for thermal stability, fire retardancy and smoke suppression applications in polymers: a new strategy. Polym Degrad Stab 2014; 107: 1–9.10.1016/j.polymdegradstab.2014.04.027Search in Google Scholar

Sain M, Park S, Suhara L. Flame retardant and mechanical properties of natural fiber-PP composites containing magnesium hydroxide. Polym Degrad Stab 2004; 83: 363–367.10.1016/S0141-3910(03)00280-5Search in Google Scholar

Satyanarayana K, Arizaga G, Wypych F. Biodegradable composites based on lignocellulosic fibers – an overview. Progr Polym Sci 2008; 34: 982–1021.10.1016/j.progpolymsci.2008.12.002Search in Google Scholar

Schartel B, Potschke P, Knoll A. Development of fire-retarded materials – interpretation of cone calorimeter data. Fire Mater 2005; 31: 327–354.10.1002/fam.949Search in Google Scholar

Shabanian M, Mirzakhanian Z, Basaki N, Khonakdar H, Faghihi K, Hoshyargar F, Wagenknecht U. Flammability and thermal properties of novel semi aromatic polyamide/organoclay nanocomposites. Therm Act 2014; 585: 63–70.10.1016/j.tca.2014.03.045Search in Google Scholar

Shan Y, Wen C, Gousheng L. Synergistic effect of THEIC based charring agent on flame retardant properties of polylactide. J Appl Polym Sci 2015; 132: 1–5.Search in Google Scholar

Shartel B, Knoll MBU. Some comments on the main flame retardancy mechanisms in polymer nanocomposites. Polym Adv Technol 2006; 17: 5–12.Search in Google Scholar

Shen Z, Bateman S, Wu D. The effects of carbon nanotube on mechanical and thermal properties of woven glass fiber reinforced polyamide-6 nanocomposites. Compos Sci Technol 2009; 69: 239–244.10.1016/j.compscitech.2008.10.017Search in Google Scholar

Sheshmani S, Ashori A, Fashapoyeh MA. Wood plastic composite using graphene nanoplatelets. Int J Biol Macromol 2013; 58: 1–6.10.1016/j.ijbiomac.2013.03.047Search in Google Scholar PubMed

Shukor F, Hassan A, Islam M, Mokhtar M, Hassan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability, and mechanical properties of alkali treated kenaf fiber filled PLA. Mater Des 2014; 54: 425–429.10.1016/j.matdes.2013.07.095Search in Google Scholar

Shumao L, Jie R, Hua Y, Tao Y, Weizhong Y. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber reinforced poly (lactic) acid biocomposites. Polym Int 2009; 59: 242–248.10.1002/pi.2715Search in Google Scholar

Song R, Wang Z, Meng X, Zhang B, Tang T. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. J Appl Polym Sci 2007; 106: 88–94.10.1002/app.27033Search in Google Scholar

Srikulkit K, Lamsamai C, Dubas S. Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Met Mater Miner 2006; 16: 41–45.Search in Google Scholar

Suardana N, Ku M, Lim J. Effects of diammonium polyphosphate on the flammability and mechanical properties of bio-composites. Mater Des 2011; 32: 1990–1999.10.1016/j.matdes.2010.11.069Search in Google Scholar

Subasinghe A, Bhattacharyya D. Performance of different intumescent ammonium polyphosphate flame retardants in PP/Kenaf fiber composites. Compos Part A 2014; 65: 91–99.10.1016/j.compositesa.2014.06.001Search in Google Scholar

Sunghyun N, Brian D, Dharnidhar V, Qi Z, Michael S, Crista M. Effect of urea additive on the thermal decomposition of griege cotton nonwoven fabric treated with diammonium polyphosphate. Polym Degrad Stab 2011; 96: 2010–2018.10.1016/j.polymdegradstab.2011.08.014Search in Google Scholar

Suppakarn N, Jarukumjorn K. Mechanical properties and flammability of sisal/PP composites: effect of flame retardant type and content. Comp Part B Eng 2009; 40: 613–618.10.1016/j.compositesb.2009.04.005Search in Google Scholar

Swain S, Patra S, Kisku S. Study of thermal, oxygen barrier, fire retardant and biodegradable properties of starch bionanocomposites. Polym Compos 2014; 35: 1238–1243.10.1002/pc.22773Search in Google Scholar

Szczygielska A, Kilenski J. Studies of properties of polypropylene/halloysite composites. Polish J Chem Technol 2011; 13: 61–65.10.2478/v10026-011-0039-0Search in Google Scholar

Tang G, Wang X, Xing W, Zhang P, Wang B, Hong N. Thermal degradation and flame retardance of biobased polylactide composites based on aluminium hypophosphite. Ind Eng Chem Res 2012; 51: 12009–12016.10.1021/ie3008133Search in Google Scholar

Tang H, Zhou X, Liu X. Effect of magnesium hydroxide on the flame retardant properties of unsaturated polyester resin. Procedia Eng 2013; 52: 336–341.10.1016/j.proeng.2013.02.150Search in Google Scholar

Tao K, Li J, Xu L, Zhao X, Xue L, Fan X, Yan Q. A novel phosphazene cyclomatrix network polymer: design, synthesis and application in flame retardant polylactide. Polym Degrad Stab 2011; 96: 1248–1254.10.1016/j.polymdegradstab.2011.04.011Search in Google Scholar

Tawakkal I, Talib R, Abdan K, Ling C. Mechanical and physical properties of kenaf derived cellulose (kdc)-filled polylactic acid (PLA) composites. PLA-Kenaf Composites, BioResources 2012; 7: 1643–1655.10.15376/biores.7.2.1643-1655Search in Google Scholar

Tay G, Azniwati A, Azizah A, Rozman H, Musa L. The flexural and impact properties of kenaf-polypropylene composites filled with montmorillonite filler. Polym-Plastics Technol Eng 2012; 51: 208–213.10.1080/03602559.2011.625376Search in Google Scholar

Tsafack M, Levalois-Grutzmacher J. Plasma-induced graft-polymerization of flame retardant monomers onto PAN fabrics. Surf Coat Technol 2006; 200: 3503–3510.10.1016/j.surfcoat.2004.11.030Search in Google Scholar

Tsafack M, Hochart F, Levalois-Grutzmacher J. Polymerization and surface modification by low pressure plasma technique. Eur Phys Appl Phys 2004; 26: 215–219.10.1051/epjap:2004038Search in Google Scholar

Van L, De Clerck K, Brancatelli G, Rosace G, Van E, De VW. Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of methyl red into a sol gel matrix. Sens Actuat B Chem 2012; 162: 27–34.10.1016/j.snb.2011.11.077Search in Google Scholar

Vieira A, Guedes R, Tita V. Considerations for the design of polymeric biodegradable products. J Polym Eng 2013; 33: 293–302.10.1515/polyeng-2012-0150Search in Google Scholar

Wang Y, Zhang F, Chen X, Jin Y, Zhang J. Burning and dripping behavior of polymers under the UL94 vertical burning test conditions. Fire Mater 2010a; 34: 203–215.10.1002/fam.1021Search in Google Scholar

Wang DY, Leuteritz A, Wang YZ, Wagenknecht U, Heinrich G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminium layered double hydroxide. Polym Degrad Stab 2010b; 95: 2474–2480.10.1016/j.polymdegradstab.2010.08.007Search in Google Scholar

Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H. Flame retardancy and thermal degradation of IFR Poly(lactic acid)/starch biocomposites. Ind Eng Chem Res 2011a; 50: 713–720.10.1021/ie1017157Search in Google Scholar

Wang D, Song Y, Lin L, Wang X, Wang Y. A novel phosphorous-containing poly (lactic acid) towards its flame retardation. Polymer 2011b; 52: 233–238.10.1016/j.polymer.2010.11.023Search in Google Scholar

Wang Z, Wei P, Liu Z. The synthesis of a novel graphene based inorganic-organic hybrid flame retardant and its application in epoxy. Compos Part B: Eng 2014; 60: 341–349.10.1016/j.compositesb.2013.12.033Search in Google Scholar

Wang W, Zhang W, Chen H, Zhang S, Li J. Synergistic effect of synthetic zeolites on flame retardant wood-flour/polypropylene composites. Constr Build Mater 2015; 79: 337–344.10.1016/j.conbuildmat.2015.01.038Search in Google Scholar

Wei L, Wang D, Chen H, Chen L, Wang X, Wang Y. Effect of phosphorous-containing flame retardant on the thermal properties and ease of ignition of poly (lactic acid). Polymer Degrad Stab 2011; 96: 1557–1561.10.1016/j.polymdegradstab.2011.05.018Search in Google Scholar

Wen W, Wei Z, Jianzhang L. Preparation and characterization of microencapsulated ammonium polyphosphate with UMF and its application in WPCs. Constr Build Mater 2014; 65: 151–158.10.1016/j.conbuildmat.2014.04.106Search in Google Scholar

Winey K, Kashiwagi T, Mu M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. Mater Res Soc Bull 2007; 32: 348–353.10.1557/mrs2007.234Search in Google Scholar

Wu K, Hu Y, Song L, Lu H, Wang Z. Flame retardancy and thermal degradation of intumescent flame retardant starch based biodegradable composites. Ind Eng Chem Res 2009; 48: 3150–3157.10.1021/ie801230hSearch in Google Scholar

Xue C, Ji S, Chen H, Wang M. Super hydrophobic cotton fabrics prepared by sol gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 2008; 9: 1–5.10.1088/1468-6996/9/3/035001Search in Google Scholar PubMed PubMed Central

Yang Z, Wang X, Lei D, Fei B, Xin JH. A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 2012; 97: 2467–2472.10.1016/j.polymdegradstab.2012.05.023Search in Google Scholar

Yang H, Gong J, Wena X, Xue J, Chen Q, Jiang Z, Tian N, Tang T. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 2015; 113: 31–37.10.1016/j.compscitech.2015.03.013Search in Google Scholar

Yu T, Jiang N, Li Y. Functionalized multi walled carbon nanotube for improving the flame retardancy of ramie/poly (lactic acid) composite. Compos Sci Technol 2014; 104: 26–33.10.1016/j.compscitech.2014.08.021Search in Google Scholar

Yuan X, Wang Y, Wang X, Chen L, Wang D. Inherent flame retardation of bio-based poly (lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polym Degrad Stab 2011; 96: 1669–1675.10.1016/j.polymdegradstab.2011.06.012Search in Google Scholar

Yuan B, Sheng H, Xiaowei M, Song L, Tai Q, Shi Y, Liew KM, Hu Y. Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J Mater Sci 2015; 50: 5389–5401.10.1007/s10853-015-9083-0Search in Google Scholar

Zhang J, Song L, Nie S, Hu Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 2009; 94: 291–296.10.1016/j.polymdegradstab.2008.12.015Search in Google Scholar

Zhang Z, Zhang J, Lu B, Xin Z, Kang C, Kim J. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood fiber composites. Compos Part B 2012; 43: 150–158.10.1016/j.compositesb.2011.06.020Search in Google Scholar

Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z. Construction of flame retardant nano-coating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 2013; 5: 3013–3021.10.1039/c3nr34020aSearch in Google Scholar PubMed

Zhi L, Ping W, Ying Y, Yonggang Y, Dean S. Synthesis of a hyperbranched poly (phosphamide ester) oligomer and its high effective flame retardancy and accelerated nucleation effect in polylactide composites. Polym Degrad Stab 2014; 110: 104–112.10.1016/j.polymdegradstab.2014.08.024Search in Google Scholar

Zhijie C, Yuying Z, Hongfeng O. Preparation, flame retardant and mechanical properties of thermoplastic starch/EVA foam composites. CIESC J 2014; 66: 1221–1227.Search in Google Scholar

Zhixin J, Luo Y, Guo B, Yang B, Du M, Jia P. Reinforcing and flame retardant effects of halloysite nanotubes on LLDPE. Polym Plastics Technol 2009; 48: 607–613.10.1080/03602550902824440Search in Google Scholar

Zhuliahani A, Rozman H, Tay G. Preparation of epoxy-kenaf nanocomposite based on montmorillonite. Adv Mater Res 2011; 65: 469–474.10.4028/www.scientific.net/AMR.264-265.469Search in Google Scholar

Zuhudi N, Lin R, Jayaraman K. Flammability, thermal, and dynamic mechanical properties of bamboo glass hybrid composites. J Thermoplast Compos Mater 2014; 14: 1–19.Search in Google Scholar

Received: 2015-3-18
Accepted: 2015-8-28
Published Online: 2015-12-17
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2015-0017/html
Scroll to top button