Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 28, 2023

Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022)

  • Carlota Guati , Lucía Gomez-Coma , Marcos Fallanza and Inmaculada Ortiz EMAIL logo

Abstract

Glucose sensing devices have experienced significant progress in the last years in response to the demand for cost-effective monitoring. Thus, research efforts have been focused on achieving reliable, selective, and sensitive sensors able to monitor the glucose level in different biofluids. The development of enzyme-based devices is challenged by poor stability, time-consuming, and complex purification procedures, facts that have given rise to the synthesis of enzyme-free sensors. Recent advances focus on the use of different components: metal-organic frameworks (MOFs), carbon nanomaterials, or metal oxides. Motivated by this topic, several reviews have been published addressing the sensor materials and synthesis methods, gathering relevant information for the development of new nanostructures. However, the abundant information has not concluded yet in commercial devices and is not useful from an engineering point of view. The dependence of the electrode response on its physico-chemical nature, which would determine the selection and optimization of the materials and synthesis method, remains an open question. Thus, this review aims to critically analyze from an engineering vision the existing information on non-enzymatic glucose electrodes; the analysis is performed linking the response in terms of sensitivity when interferences are present, stability, and response under physiological conditions to the electrode characteristics.


Corresponding author: Inmaculada Ortiz, Chemical and Biomolecular Engineering Department, University of Cantabria, 39005 Santander, Spain, E-mail:

Award Identifier / Grant number: PDC2022-133122-I00

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Financial support from the Spanish Ministry of Science, Innovation, and Universities under the project PDC2022 – 133122-I00.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adeel, M., Rahman, M.M., Caligiuri, I., Canzonieri, V., Rizzolio, F., and Daniele, S. (2020). Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens. Bioelectron. 165: 112331, https://doi.org/10.1016/j.bios.2020.112331.Search in Google Scholar PubMed

Ahmad, R., Ahn, M.S., and Hahn, Y.B. (2017a). Fabrication of a non-enzymatic glucose sensor field-effect transistor based on vertically-oriented ZnO nanorods modified with Fe2O3. Electrochem. Commun. 77: 107–111, https://doi.org/10.1016/j.elecom.2017.03.006.Search in Google Scholar

Ahmad, R., Tripathy, N., Ahn, M.S., Bhat, K.S., Mahmoudi, T., Wang, Y., Yoo, J.Y., Kwon, D.W., Yang, H.Y., and Hahn, Y.B. (2017b). Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7: 5715, https://doi.org/10.1038/s41598-017-06064-8.Search in Google Scholar PubMed PubMed Central

Ahmad, R., Khan, M., Mishra, P., Jahan, N., Ahsan, M.A., Ahmad, I., and Khan, M.R. (2021). Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection. J. Electrochem. Soc. 168: 017501, https://doi.org/10.1149/1945-7111/abd515.Search in Google Scholar

Alaba, P.A., Lee, C.S., Abnisa, F., Aroua, M.K., Cognet, P., Pérès, Y., and Wan-Daud, W.M.A. (2020). A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Rev. Chem. Eng. 37: 779–811, https://doi.org/10.1515/revce-2019-0013.Search in Google Scholar

Amirzadeh, Z., Javadpour, S., Shariat, M.H., and Knibbe, R. (2018). Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT:PSS matrix. Synth. Met. 245: 160–166.10.1016/j.synthmet.2018.08.021Search in Google Scholar

Arjona, N., Trejo, G., Ledesma-García, J., Arriaga, L.G., and Guerra-Balcázar, M. (2016). An electrokinetic-combined electrochemical study of the glucose electro-oxidation reaction: effect of gold surface energy. RSC Adv. 6: 15630–15638, https://doi.org/10.1039/c5ra23780g.Search in Google Scholar

Badhulika, S., Paul, R.K., Rajesh, Terse, T., and Mulchandani, A. (2014). Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis 26: 103–108, https://doi.org/10.1002/elan.201300286.Search in Google Scholar

Baghayeri, M., Nodehi, M., Amiri, A., Amirzadeh, N., Behazin, R., and Iqbal, M.Z. (2020). Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta 1111: 103–109, https://doi.org/10.1016/j.aca.2020.03.039.Search in Google Scholar PubMed

Batchelor-McAuley, C., Shao, L., Wildgoose, G.G., Green, M.L.H., and Compton, R.G. (2008). An electrochemical comparison of manganese dioxide microparticles versus α and β manganese dioxide nanorods: mechanistic and electrocatalytic behavior. New J. Chem. 32: 1195–1203, https://doi.org/10.1039/b718862e.Search in Google Scholar

Beden, B., Largeaud, F., Kokoh, K.B., and Lamy, C. (1996). Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of D-glucose: identification of reactive intermediates and reaction products. Electrochim. Acta 41: 701–709, https://doi.org/10.1016/0013-4686(95)00359-2.Search in Google Scholar

Belgherbi, O., Chouder, D., Lakhdari, D., Dehchar, C., Laidoudi, S., Lamiri, L., Hamam, A., and Seid, L. (2020). Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film. J. Inorg. Organomet. Polym. 30: 2499–2508.10.1007/s10904-020-01554-1Search in Google Scholar

Bhat, K.S., Ahmad, R., Yoo, J.Y., and Hahn, Y.B. (2018). Fully nozzle-jet printed non-enzymatic electrode for biosensing application. J. Colloid Interface Sci. 512: 480–488, https://doi.org/10.1016/j.jcis.2017.10.088.Search in Google Scholar PubMed

Burke, L.D. (1994). Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 39: 1841–1848, https://doi.org/10.1016/0013-4686(94)85173-5.Search in Google Scholar

Can, M. (2020). Green gold nanoparticles from plant-derived materials: an overview of the reaction synthesis types, conditions, and applications. Rev. Chem. Eng. 36: 859–877, https://doi.org/10.1515/revce-2018-0051.Search in Google Scholar

Cataldi, T.R.I., Guerrieri, A., Casella, I.G., and Desimoni, E. (1995). Study of a cobalt based surface modified glassy carbon electrode: electrocatalytic oxidation of sugars and alditols. Electroanalysis 7: 305–311, https://doi.org/10.1002/elan.1140070402.Search in Google Scholar

Chang, G., Shu, H., Ji, K., Oyama, M., Liu, X., and He, Y. (2014). Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl. Surf. Sci. 288: 524–529, https://doi.org/10.1016/j.apsusc.2013.10.064.Search in Google Scholar

Chalil Oglou, R., Ulusoy Ghobadi, T.G., Ozbay, E., and Karadas, F. (2022). Selective glucose sensing under physiological pH with flexible and binder‐free Prussian blue coated carbon cloth electrodes. ChemElectroChem. 9, https://doi.org/10.1002/celc.202101355.Search in Google Scholar

Chang, G., Shu, H., Huang, Q., Oyama, M., Ji, K., Liu, X., and He, Y. (2015). Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim. Acta 157: 149–157, https://doi.org/10.1016/j.electacta.2015.01.085.Search in Google Scholar

Chen, A., Ding, Y., Yang, Z., and Yang, S. (2015). Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor. Biosens. Bioelectron. 74: 967–973, https://doi.org/10.1016/j.bios.2015.07.074.Search in Google Scholar PubMed

Chen, H., Fan, G., Zhao, J., Qiu, M., Sun, P., Fu, Y., Han, D., and Cui, G. (2019). A portable micro glucose sensor based on copper-based nanocomposite structure. New J. Chem. 43: 7806–7813, https://doi.org/10.1039/c9nj00888h.Search in Google Scholar

Chen, M., Cao, X., Chang, K., Xiang, H., and Wang, R. (2021). A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochim. Acta 368: 137603, https://doi.org/10.1016/j.electacta.2020.137603.Search in Google Scholar

Chia, H.L., Mayorga-Martinez, C.C., Gusmão, R., Novotny, F., Webster, R.D., and Pumera, M. (2020). A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell-gold core nanorod composites. Chem. Commun. 56: 7909–7912, https://doi.org/10.1039/d0cc02770g.Search in Google Scholar PubMed

Chou, C.H., Chen, J.C., Tai, C.C., Sun, I.W., and Zen, J.M. (2008). A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 20: 771–775, https://doi.org/10.1002/elan.200704102.Search in Google Scholar

Cui, Z., Yin, H., Nie, Q., Qin, D., Wu, W., and He, X. (2015). Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors. J. Electroanal. Chem. 757: 51–57, https://doi.org/10.1016/j.jelechem.2015.09.011.Search in Google Scholar

Darvishi, S., Souissi, M., Karimzadeh, F., Kharaziha, M., Sahara, R., and Ahadian, S. (2017). Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: an experimental and modeling study. Electrochim. Acta 240: 388–398, https://doi.org/10.1016/j.electacta.2017.04.086.Search in Google Scholar

Dhara, K. and Mahapatra, D.R. (2018). Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim. Acta 185: 49, https://doi.org/10.1007/s00604-017-2609-1.Search in Google Scholar PubMed

Ding, Y., Liu, Y., Parisi, J., Zhang, L., and Lei, Y. (2011). A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 28: 393–398, https://doi.org/10.1016/j.bios.2011.07.054.Search in Google Scholar PubMed

Dong, M., Hu, H., Ding, S., Wang, C., and Li, L. (2020). A facile synthesis of CoMn2O4 nanosheets on reduced graphene oxide for nonenzymatic glucose sensing. Nanotechnology 32: 055501, https://doi.org/10.1088/1361-6528/abc112.Search in Google Scholar PubMed

Dong, Q., Ryu, H., and Lei, Y. (2021). Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta 370: 137744, https://doi.org/10.1016/j.electacta.2021.137744.Search in Google Scholar

Dutta, S., Biswas, S., Maji, R. C., and Saha, R. (2017). Environmentally sustainable fabrication of Cu1.94S-rGO composite for dual environmental application: visible-light-active photocatalyst and room-temperature phenol sensor. ACS Sustainable Chem. Eng. 6: 835–845.10.1021/acssuschemeng.7b03186Search in Google Scholar

Eivazzadeh-Keihan, R., Bahojb Noruzi, E., Chidar, E., Jafari, M., Davoodi, F., Kashtiaray, A., Ghafori Gorab, M., Masoud Hashemi, S., Javanshir, S., Ahangari Cohan, R., et al.. (2022). Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal 442: 136183.10.1016/j.cej.2022.136183Search in Google Scholar

Emir, G., Dilgin, Y., Ramanaviciene, A., and Ramanavicius, A. (2021). Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem. J. 161: 105751, https://doi.org/10.1016/j.microc.2020.105751.Search in Google Scholar

Ensafi, A.A., Ahmadi, N., and Rezaei, B. (2017). Nickel nanoparticles supported on porous silicon flour, application as a non-enzymatic electrochemical glucose sensor. Sensor. Actuator. B Chem. 239: 807–815, https://doi.org/10.1016/j.snb.2016.08.088.Search in Google Scholar

Ensafi, A.A., Zandi-Atashbar, N., Rezaei, B., Ghiaci, M., Chermahini, M.E., and Moshiri, P. (2016). Non-enzymatic glucose electrochemical sensor based on silver nanoparticle decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 6: 60926–60932, https://doi.org/10.1039/c6ra10698f.Search in Google Scholar

Ernst, S., Heitbaum, J., and Hamann, C.H. (1979). The electrooxidation of glucose in phosphate buffer solutions. Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem. 100: 173–183, https://doi.org/10.1016/s0022-0728(79)80159-x.Search in Google Scholar

Escalona-Villalpando, R.A., Gurrola, M.P., Trejo, G., Guerra-Balcázar, M., Ledesma-García, J., and Arriaga, L.G. (2018). Electrodeposition of gold on oxidized and reduced graphite surfaces and its influence on glucose oxidation. J. Electroanal. Chem. 816: 92–98, https://doi.org/10.1016/j.jelechem.2018.03.037.Search in Google Scholar

Eslami, R., Azizi, N., Ghaffarian, S.R., Mehrvar, M., and Zarrin, H. (2021). Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochim. Acta 404: 139749, https://doi.org/10.1016/j.electacta.2021.139749.Search in Google Scholar

Fan, S., Zhao, M., Ding, L., Liang, J., Chen, J., Li, Y., and Chen, S. (2016). Synthesis of 3D hierarchical porous Co3O4 film by eggshell membrane for non-enzymatic glucose detection. J. Electroanal. Chem. 775: 52–57, https://doi.org/10.1016/j.jelechem.2016.05.035.Search in Google Scholar

Feng, J., Ye, Y., Xiao, M., Wu, G., and Ke, Y. (2020). Synthetic routes of the reduced graphene oxide. Chem. Pap. 74: 3767–3783.10.1007/s11696-020-01196-0Search in Google Scholar

Foroughi, F., Rahsepar, M., Hadianfard, M.J., and Kim, H. (2018). Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchim. Acta 185: 57, https://doi.org/10.1007/s00604-017-2558-8.Search in Google Scholar PubMed

Gao, Y., Yu, Q., Du, Y., Yang, M., Gao, L., Rao, S., Yang, Z., Lan, Q., and Yang, Z. (2019). Synthesis of Co3O4 -NiO nano-needles for amperometric sensing of glucose. J. Electroanal. Chem. 838: 41–47, https://doi.org/10.1016/j.jelechem.2019.02.049.Search in Google Scholar

Garcia-Garcia, F.J., Salazar, P., Yubero, F., and González-Elipe, A.R. (2016). Non-enzymataic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201: 38–44, https://doi.org/10.1016/j.electacta.2016.03.193.Search in Google Scholar

Ghanbari, Kh., and Babaei, Z. (2016). Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal. Biochem. 498: 37–46.10.1016/j.ab.2016.01.006Search in Google Scholar PubMed

Gijare, M. (2021). Reduced graphene oxide based electrochemical nonenzymatic human serum glucose sensor. ES Mater. Manuf., https://doi.org/10.30919/esmm5f486.Search in Google Scholar

Goodnight, L., Butler, D., Xia, T., and Ebrahimi, A. (2021). Non-enzymatic detection of glucose in neutral solution using PBS-treated electrodeposited copper-nickel electrodes. Biosensors 11: 409, https://doi.org/10.3390/bios11110409.Search in Google Scholar PubMed PubMed Central

Gougis, M., Pereira, A., Ma, D., and Mohamedi, M. (2014). Oxygen gas assisted laser deposition of gold thin films: electrooxidation of glucose. Int. J. Electrochem. Sci. 9: 3588–3601.10.1016/S1452-3981(23)08033-1Search in Google Scholar

Guo, M., Wei, L., Qu, Y., Zeng, F., and Yuan, C. (2018). One-step electrochemical exfoliation of nanoparticles-assembled NiO nanosheets for non-enzymatic glucose biosensor. Mater. Lett. 213: 174–177, https://doi.org/10.1016/j.matlet.2017.11.049.Search in Google Scholar

Guo, M.M., Wang, P.S., Zhou, C.H., Xia, Y., Huang, W., and Li, Z. (2014). An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating. Sensor. Actuator. B Chem. 203: 388–395, https://doi.org/10.1016/j.snb.2014.07.007.Search in Google Scholar

Guo, X., Deng, H., Zhou, H., Fan, T., and Gao, Z. (2015). Detection of glucose with a lamellar-ridge architectured gold modified electrode. Sensor. Actuator. B Chem. 206: 721–727, https://doi.org/10.1016/j.snb.2014.09.019.Search in Google Scholar

Hashemi, S.A., Mousavi, S.M., Bahrani, S., and Ramakrishna, S. (2020). Polythiophene silver bromide nanostructure as ultra-sensitive non-enzymatic electrochemical glucose biosensor. Eur. Polym. J. 138: 109959, https://doi.org/10.1016/j.eurpolymj.2020.109959.Search in Google Scholar

Hassan, I. U., Salim, H., Naikoo, G. A., Awan, T., Dar, R. A., Arshad, F., Tabidi, M. A., Das, R., Ahmed, W., Asiri, A. M., et al.. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. J. Saudi Chem. Soc. 25: 101228.10.1016/j.jscs.2021.101228Search in Google Scholar

Hayat, A., Mane, S.K.B., Shaishta, N., Khan, J., Hayat, A., Keyum, G., Uddin, I., Raziq, F., Khan, M., and Manjunatha, G. (2019). Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor. J. Electrochem. Soc. 166: B1602–B1611, https://doi.org/10.1149/2.0491915jes.Search in Google Scholar

He, C., Wang, J., Gao, N., He, H., Zou, K., Ma, M., Zhou, Y., Cai, Z., Chang, G., and He, Y. (2019). A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values. Microchim. Acta 186: 722, https://doi.org/10.1007/s00604-019-3796-8.Search in Google Scholar PubMed

He, W., Sun, Y., Xi, J., Abdurhman, A.A.M., Ren, J., and Duan, H. (2016). Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Anal. Chim. Acta 903: 61–68, https://doi.org/10.1016/j.aca.2015.11.019.Search in Google Scholar PubMed

Hoa, L. T., Sun, K. G., and Hur, S. H. (2015). Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sens. Actuators, B 210: 618–623.10.1016/j.snb.2015.01.020Search in Google Scholar

Hou, L., Zhao, H., Bi, S., Xu, Y., and Lu, Y. (2017). Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor. Electrochim. Acta 248: 281–291, https://doi.org/10.1016/j.electacta.2017.07.142.Search in Google Scholar

Hovancová, J., Niscakova, V., Šišoláková, I., Orinaková, R., Maskaľová, I., Orinak, A., Koval, K., et al.. (2020). Gold microelectrodes decorated by spike-like nanostructures as a promising non-enzymatic glucose sensor. Electroanalysis 33: 347–354, https://doi.org/10.1002/elan.202060207.Search in Google Scholar

Hsu, C.W., Su, F.C., Peng, P.Y., Young, H.T., Liao, S., and Wang, G.J. (2016). Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sensor. Actuator. B Chem. 230: 559–565, https://doi.org/10.1016/j.snb.2016.02.109.Search in Google Scholar

Huo, K., Fu, J., Zhang, X., Xu, P., Gao, B., Mooni, S., Li, Y., Fu, J., and Huo, K. (2017). Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sensor. Actuator. B Chem. 244: 38–46, https://doi.org/10.1016/j.snb.2016.12.088.Search in Google Scholar

Hwang, D.W., Lee, S., Seo, M., and Chung, T.D. (2018). Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal. Chim. Acta 29: 1–34, https://doi.org/10.1016/j.aca.2018.05.051.Search in Google Scholar PubMed

Islam, T., Hasan, M.M., Awal, A., Nurunnabi, M., and Ahammad, A.J.S. (2020). Metal nanoparticles for electrochemical sensing: progress and challenges in the clinical transition of point-of-care testing. Molecules 25: 8–13, https://doi.org/10.3390/molecules25245787.Search in Google Scholar PubMed PubMed Central

Jadhav, S.B., Malavekar, D.B., Kale, S.B., Sabale, S.R., Patil, U.M., Lokhande, C.D., and Pawaskar, P.N. (2021). Reliable glucose sensing properties of electrodeposited vertically aligned manganese oxide thin film electrode. Appl. Phys. A 127: 1–9, https://doi.org/10.1007/s00339-021-04544-3.Search in Google Scholar

Jagadeesan, M.S., Movlaee, K., Krishnakumar, T., Leonardi, S.G., and Neri, G. (2019). One-step microwave-assisted synthesis and characterization of novel CuO nanodisks for non-enzymatic glucose sensing. J. Electroanal. Chem. 835: 161–168, https://doi.org/10.1016/j.jelechem.2019.01.024.Search in Google Scholar

Jeong, H., Yoo, J., Park, S., Lu, J., Park, S., and Lee, J. (2021). Non-enzymatic glucose biosensor based on highly pure TiO2 nanoparticles. Biosensors 11: 1–10, https://doi.org/10.3390/bios11050149.Search in Google Scholar PubMed PubMed Central

Jia, H., Shang, N., Feng, Y., Ye, H., Zhao, J., Wang, H., Wang, C., and Zhang, Y. (2021). Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection. J. Colloid Interface Sci. 583: 310–320, https://doi.org/10.1016/j.jcis.2020.09.051.Search in Google Scholar PubMed

Jung, D.U.J., Ahmad, R., and Hahn, Y.B. (2018). Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J. Colloid Interface Sci. 512: 21–18, https://doi.org/10.1016/j.jcis.2017.10.037.Search in Google Scholar PubMed

Juřík, T., Podešva, P., Farka, Z., Kovář, D., Skládal, P., and Foret, F. (2016). Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum. Electrochim. Acta 188: 277–285, https://doi.org/10.1016/j.electacta.2015.12.009.Search in Google Scholar

Kailasa, S., Geeta, B., Jayarambabu, N., Reddy, R.K.K., Sharma, S., and Rao, K.V. (2019). Conductive polyaniline nanosheets (CPANINS) for a non-enzymatic glucose sensor. Mater. Lett. 245: 118–121, https://doi.org/10.1016/j.matlet.2019.02.103.Search in Google Scholar

Kangkamano, T., Numnuam, A., Limbut, W., Kanatharana, P., and Thavarungkul, P. (2017). Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sensor. Actuator. B Chem. 246: 854–863, https://doi.org/10.1016/j.snb.2017.02.105.Search in Google Scholar

Khalaf, N., Ahamad, T., Naushad, M., Al-hokbany, N., Al-Saeedi, S.I., Almotairi, S., and Alshehri, S.M. (2020). Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol. 146: 763–772, https://doi.org/10.1016/j.ijbiomac.2019.11.193.Search in Google Scholar PubMed

Kim, D.M., Moon, J.M., Lee, W.C., Yoon, J.H., Choi, C.S., and Shim, Y.B. (2017). A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens. Bioelectron. 91: 276–283, https://doi.org/10.1016/j.bios.2016.12.046.Search in Google Scholar PubMed

Kumar, S., Ahlawat, W., Kumar, R., and Dilbaghi, N. (2015). Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 70: 498–503.10.1016/j.bios.2015.03.062Search in Google Scholar PubMed

Kuznowicz, M., Rębiś, T., Jędrzak, A., Nowaczyk, G., Szybowicz, M., and Jesionowski, T. (2022). Glucose determination using amperometric non-enzymatic sensor based on electroactive poly(caffeic acid)@MWCNT decorated with CuO nanoparticles. Microchim Acta 189: 159.10.1007/s00604-022-05256-ySearch in Google Scholar PubMed

La Belle, J.T., Adams, A., Lin, C.E., Engelschall, E., Pratt, B., and Cook, C.B. (2016). Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chem. Commun. 52: 9197–9204, https://doi.org/10.1039/c6cc03609k.Search in Google Scholar PubMed

Lai, J., Yi, Y., Zhu, P., Shen, J., Wu, K., Zhang, L., and Liu, J. (2016). Polyaniline-based glucose biosensor: a review. J. Electroanal. Chem. 782: 138–153.10.1016/j.jelechem.2016.10.033Search in Google Scholar

Lang, X.-Y., Fu, H.-Y., Hou, C., Han, G.-F., Yang, P., Liu, Y.-B., and Jiang, Q. (2013). Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, https://doi.org/10.1038/ncomms3169.Search in Google Scholar PubMed

Larew, L.A. and Johnson, D.C. (1989). Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262: 167–182, https://doi.org/10.1016/0022-0728(89)80020-8.Search in Google Scholar

Lee, I., Probst, D., Klonoff, D., and Sode, K. (2021). Continuous glucose monitoring systems – current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 181: 113054, https://doi.org/10.1016/j.bios.2021.113054.Search in Google Scholar PubMed

Lee, S., Lee, J., Park, S., Boo, H., Kim, H.C., and Chung, T.D. (2018). Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Appl. Mater. Today 10: 24–29, https://doi.org/10.1016/j.apmt.2017.11.009.Search in Google Scholar

Lee, S.J., Yoon, H.S., Xuan, X., Park, J.Y., Paik, S.J., and Allen, M.G. (2016). A patch type non-enzymatic biosensor based on 3D SUS micro-needle electrode array for minimally invasive continuous glucose monitoring. Sensor. Actuator. B Chem. 222: 1144–1151, https://doi.org/10.1016/j.snb.2015.08.013.Search in Google Scholar

Lee, W.C., Kim, K.B., Gurudatt, N.G., Hussain, K.K., Choi, C.S., Park, D.S., and Shim, Y.B. (2019). Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 130: 48–54, https://doi.org/10.1016/j.bios.2019.01.028.Search in Google Scholar PubMed

Lertanantawong, B., O’Mullane, A.P., Surareungchai, W., Somasundrum, M., Burke, L.D., and Bond, A.M. (2008). Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude fourier transformed alternating current voltammetry. Langmuir 24: 2856–2868, https://doi.org/10.1021/la702454k.Search in Google Scholar PubMed

Li, S., Bai, W., Zhang, X., and Zheng, J. (2020). NiO/Cu-TCPP hybrid nanosheets as an efficient substrate for supercapacitor and sensing applications. J. Electrochem. Soc. 167: 027534, https://doi.org/10.1149/1945-7111/ab6d4c.Search in Google Scholar

Lin, L., Weng, S., Zheng, Y., Liu, X., Ying, S., Chen, F., and You, D. (2020). Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential. J. Electroanal. Chem. 865: 114147, https://doi.org/10.1016/j.jelechem.2020.114147.Search in Google Scholar

Lin, S., Feng, W., Miao, X., Zhang, X., Chen, S., Chen, Y., Wang, W., and Zhang, Y. (2018). A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate. Biosens. Bioelectron. 110: 89–96, https://doi.org/10.1016/j.bios.2018.03.019.Search in Google Scholar PubMed

Liu, Q., Zhong, H., Chen, M., Zhao, C., Liu, Y., Xi, F., and Luo, T. (2020a). Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv. 10: 33739–33746, https://doi.org/10.1039/d0ra05553k.Search in Google Scholar PubMed PubMed Central

Liu, S., Zeng, W., Guo, Q., and Li, Y. (2020b). Metal oxide-based composite for non-enzymatic glucose sensors. J. Mater. Sci. Mater. Electron. 31: 16111–16136, https://doi.org/10.1007/s10854-020-04239-0.Search in Google Scholar

Liu, X., Cai, Z., Gao, N., Ye, S., Tao, T., He, H., Chang, G., and He, Y. (2021). Controllable preparation of (200) facets preferential oriented silver nanowires for non-invasive detection of glucose in human sweat. Smart Mater. Med. 2: 150–157, https://doi.org/10.1016/j.smaim.2021.05.002.Search in Google Scholar

Lu, L. (2019). Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Microchim. Acta 186: 64, https://doi.org/10.1007/s00604-019-3772-3.Search in Google Scholar PubMed

Lv, H., Li, Q., and Peng, H. (2020). Protein templated Au–CuO bimetallic nanoclusters toward neutral glucose sensing. Chin. J. Chem. Phys. 35: 570, https://doi.org/10.1063/1674-0068/cjcp2005076.Search in Google Scholar

Maghsoudi, S. and Mohammadi, A. (2020). Reduced graphene oxide nanosheets decorated with cobalt oxide nanoparticles: a nonenzymatic electrochemical approach for glucose detection. Synth. Met. 269: 116543, https://doi.org/10.1016/j.synthmet.2020.116543.Search in Google Scholar

Mahato, K. and Wang, J. (2021). Electrochemical sensors: from the bench to the skin. Sensor. Actuator. B Chem. 344: 130178, https://doi.org/10.1016/j.snb.2021.130178.Search in Google Scholar

Mahshid, S.S., Mahshid, S., Dolati, A., Ghorbani, M., Yang, L., Luo, S., and Cai, Q. (2011). Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58: 551–555, https://doi.org/10.1016/j.electacta.2011.09.083.Search in Google Scholar

Malik, R., Joshi, N., and Tomer, V. K. (2022). Functional graphitic carbon (IV) nitride: a versatile sensing material. Coord. Chem. Rev. 466: 214611.10.1016/j.ccr.2022.214611Search in Google Scholar

Manafi-Yeldaghermani, R., Shahrokhian, S., and Hafezi Kahnamouei, M. (2021). Facile preparation of a highly sensitive non-enzymatic glucose sensor based on the composite of Cu(OH)2 nanotubes arrays and conductive polypyrrole. Microchem. J. 169: 106636, https://doi.org/10.1016/j.microc.2021.106636.Search in Google Scholar

Marini, S., Mansour, N.B., Hjiri, M., Dhahri, R., Mir, L.E., Espro, C., Bonavita, A., Galvagno, S., Neri, G., and Leonardi, S.G. (2018). Non-enzymatic glucose sensor based on nickel/carbon composite. Electroanalysis 30: 727–733, https://doi.org/10.1002/elan.201700687.Search in Google Scholar

Mazaheri, M., Aashuri, H., and Simchi, A. (2017). Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensor. Actuator. B Chem. 251: 462–471, https://doi.org/10.1016/j.snb.2017.05.062.Search in Google Scholar

McGarraugh, G. (2009). The chemistry of commercial continuous glucose monitors. Diabetes Technol. Therapeut. 11: 17–24, https://doi.org/10.1089/dia.2008.0133.Search in Google Scholar PubMed

Mei, L., Zhang, P., Chen, J., Chen, D., Quan, Y., Gu, N., Zhang, G., and Cui, R. (2016). Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim. Acta 183: 1359–1365, https://doi.org/10.1007/s00604-016-1764-0.Search in Google Scholar

Meng, L., Jin, J., Yang, G., Lu, T., Zhang, H., and Cai, C. (2009). Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 81: 7271–7280, https://doi.org/10.1021/ac901005p.Search in Google Scholar PubMed

Meng, L., Xia, Y., Liu, W., Zhang, L., Zou, P., and Zhang, Y. (2015). Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim. Acta 152: 330–337, https://doi.org/10.1016/j.electacta.2014.11.180.Search in Google Scholar

Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., and Ouyang, R. (2014). Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 53: 428–439, https://doi.org/10.1016/j.bios.2013.10.008.Search in Google Scholar PubMed

Mohammad, A., Khan, M.E., Hazmi, W.A., and Yoon, T. (2021). Fabrication of electrochemical sensor using SnO2-modified-TiO2 nanocomposite for detection of hydrazine. J. Electrochem. Soc. 168: 067518, https://doi.org/10.1149/1945-7111/ac099b.Search in Google Scholar

Mohapatra, J., Ananthoju, B., Nair, V., Mitra, A., Bahadur, D., Medhekar, N.V., and Aslam, M. (2018). Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci. 442: 332–341, https://doi.org/10.1016/j.apsusc.2018.02.124.Search in Google Scholar

Naikoo, G.A., Salim, H., Hassan, I.U., Awan, T., Arshad, F., Pedram, M.Z., Ahmed, W., and Qurashi, A. (2021). Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management – a review. Front. Chem. 9: 1–20, https://doi.org/10.3389/fchem.2021.748957.Search in Google Scholar PubMed PubMed Central

Niu, X., Li, X., Pan, J., He, Y., Qiu, F., and Yan, Y. (2016). Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges. RSC Adv. 6: 84893–84905, https://doi.org/10.1039/c6ra12506a.Search in Google Scholar

Nugraha, A.S., Li, C., Bo, J., Iqbal, M., Alshehri, S.M., Ahamad, T., Malgras, V., Yamauchi, Y., and Asahi, T. (2017). Block-copolymer-assisted electrochemical synthesis of mesoporous gold electrodes: towards a non-enzymatic glucose sensor. Chemelectrochem 4: 2571–2576, https://doi.org/10.1002/celc.201700548.Search in Google Scholar

Ojani, R., Raoof, J.B., and Fathi, S. (2008). Electrocatalytic oxidation of some carbohydrates by nickel/poly (o-aminophenol) modified carbon paste electrode. Electroanalysis 20: 1825–1830, https://doi.org/10.1002/elan.200804260.Search in Google Scholar

Olejnik, A., Karczewski, J., Dolega, A., Siuzdak, K., and Grochowska, K. (2020). Insightful analysis of phenomena arising at the metal.polymer interphase of au-ti based non-enzymatic glucose sensitive electrodes covered by nafion. Coatings 10: 117.10.3390/coatings10090810Search in Google Scholar

Pasta, M., La Mantia, F., and Cui, Y. (2010). Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 55: 5561–5568.10.1016/j.electacta.2010.04.069Search in Google Scholar

Patil, A.S., Patil, R.T., Lohar, G.M., and Fulari, V.J. (2021). Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method. Appl. Phys. A 127: 1–10, https://doi.org/10.1007/s00339-020-04258-y.Search in Google Scholar

Pei, Y., Hu, M., Tu, F., Tang, X., Huang, W., Chen, S., and Li, Z., Xia, Y. (2018). Ultra-rapid fabrication of highly surface-roughened nanoporous gold film from AuSn alloy with improved performance for nonenzymatic glucose sensing. Biosens. Bioelectron. 117: 758–765, https://doi.org/10.1016/j.bios.2018.07.021.Search in Google Scholar PubMed

Petruleviciene, M., Juodkazte, J., Savickaja, I., Karpicz, R., Morkvenaite-Vilkonciene, I., and Ramanavicius, A. (2022). BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination. J. Electroanal. Chem. 918: 116446, https://doi.org/10.1016/j.jelechem.2022.116446.Search in Google Scholar

Pletcher, D. (1984). Electrocatalysis: present and future. J. Appl. Electrochem. 14: 403–415, https://doi.org/10.1007/bf00610805.Search in Google Scholar

Popović, K.D., Tripković, A.V., and Adžić, R.R. (1992). Oxidation of d-glucose on single-crystal platinum electrodes: a mechanistic study. J. Electroanal. Chem. 339: 227–245, https://doi.org/10.1016/0022-0728(92)80454-c.Search in Google Scholar

Prabhakaran, A. and Nayak, P. (2020). Surface engineering of laser-scribed graphene sensor enables non-enzymatic glucose detection in human body fluids. ACS Appl. Nano Mater. 3: 391–398, https://doi.org/10.1021/acsanm.9b02025.Search in Google Scholar

Promsuwan, K., Kachatong, N., and Limbut, W. (2019). Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim. Acta 320: 134621, https://doi.org/10.1016/j.electacta.2019.134621.Search in Google Scholar

Ramanavicius, S. and Ramanavicius, A. (2021). Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. J. Nanomater. 11: 371, https://doi.org/10.3390/nano11020371.Search in Google Scholar PubMed PubMed Central

Rathod, D., Dickinson, C., Egan, D., and Dempsey, E. (2010). Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensor. Actuator. B Chem. 143: 547–554, https://doi.org/10.1016/j.snb.2009.09.064.Search in Google Scholar

Sabu, C., Henna, T.K., Raphey, V.R., Nivitha, K.P., and Pramod, K. (2019). Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 141: 111201, https://doi.org/10.1016/j.bios.2019.03.034.Search in Google Scholar PubMed

Sedaghat, S., Piepenburg, C.R., Zareei, A., Qi, Z., Peana, S., Wang, H., and Rahimi, R. (2020). Laser-induced mesoporous nickel oxide as a highly sensitive nonenzymatic glucose sensor. ACS Appl. Nano Mater. 3: 5260–5270, https://doi.org/10.1021/acsanm.0c00659.Search in Google Scholar

Senior, M. (2014). Novartis signs up for google smart lens. Nat. Biotechnol. 32: 856, https://doi.org/10.1038/nbt0914-856.Search in Google Scholar PubMed

Shabbir, S.A., Shamaila, S., Sharif, R., Zafar, N., Latif, H., and Ashiq, M.G.B. (2020). Electrophoretic deposition of uniform carbon nanotubes for nickel nanocomposites based nonenzymatic glucose sensor. Sens. Lett. 18: 427–435, https://doi.org/10.1166/sl.2020.4237.Search in Google Scholar

Shen, N., Xu, H., Zhao, W., Zhao, Y., and Zhang, X. (2019). Highly responsive and ultrasensitive non-enzymatic electrochemical glucose sensor based on au foam. Sensors 19: 1203, https://doi.org/10.3390/s19051203.Search in Google Scholar PubMed PubMed Central

Shu, H., Cao, L., Chang, G., He, H., Zhang, Y., and He, Y. (2014). Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim. Acta 132: 524–532, https://doi.org/10.1016/j.electacta.2014.04.031.Search in Google Scholar

Shu, H., Chang, G., Su, J., Cao, L., Huang, Q., Zhang, Y., Xia, T., and He, Y. (2015). Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sensor. Actuator. B Chem. 220: 331–339, https://doi.org/10.1016/j.snb.2015.05.094.Search in Google Scholar

Simsek, M. and Wongkaew, N. (2021). Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review. Anal. Bioanal. Chem. 413: 6079–6099, https://doi.org/10.1007/s00216-021-03382-9.Search in Google Scholar PubMed PubMed Central

Simsek, M., Hoecherl, K., Schlosser, M., Baeumner, A.J., and Wongkaew, N. (2020). Printable 3D carbon nanofiber networks with embedded metal nanocatalysts. ACS Appl. Mater. Interfaces 12: 39533–39540, https://doi.org/10.1021/acsami.0c08926.Search in Google Scholar PubMed

Singer, N., Pillai, R.G., Johnson, A.I.D., Harris, K.D., and Jemere, A.B. (2020). Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Microchim. Acta 187: 15–20, https://doi.org/10.1007/s00604-020-4171-5.Search in Google Scholar PubMed

Sriramprabha, R., Sekar, M., Wilson, J., Ponpandian, N., and Viswanathan, C. (2020). Mesoporous nickel oxide nanostructures: influences of crystalline defects and morphological features on mediator-free electrochemical monosaccharide sensor application. Nanotechnology 31: 215501, https://doi.org/10.1088/1361-6528/ab6fe2.Search in Google Scholar PubMed

Sun, F., Wang, S., Wang, Y., Zhang, J., Yu, X., Zhou, Y., and Zhang, J. (2019). Synthesis of Ni-Co hydroxide nanosheets constructed hollow cubes for electrochemical glucose determination. Sensors 19: 2938, https://doi.org/10.3390/s19132938.Search in Google Scholar PubMed PubMed Central

Strakosas, X., Selberg, J., Pansodtee, P., Yonas, N., Manapongpun, P., Teodorescu, M., and Rolandi, M. (2019). A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci. Rep. 9, https://doi.org/10.1038/s41598-019-46302-9.Search in Google Scholar PubMed PubMed Central

Sun, S., Shi, N., Liao, X., Zhang, B., Yin, G., Huang, Z., Chen, X., and Pu, X. (2020). Facile synthesis of CuO/Ni(OH)2 on carbon cloth for non-enzymatic glucose sensing. Appl. Surf. Sci. 529: 147067, https://doi.org/10.1016/j.apsusc.2020.147067.Search in Google Scholar

Teymourian, H., Barfidokht, A., and Wang, J. (2020). Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49: 7671–7709, https://doi.org/10.1039/d0cs00304b.Search in Google Scholar PubMed

Thakur, S., Verma, A., Alsanie, W.F., Christie, G., and Thakur, V.K. (2022). On the graphene and its derivative based polymer nanocomposites for glucose sensing. Mater. Lett. 307: 130971, https://doi.org/10.1016/j.matlet.2021.130971.Search in Google Scholar

Tian, L., Hu, W., Zhong, X., and Liu, B. (2015). Glucose sensing characterisations of TiO2/CuO nanofibres synthesised by electrospinning. Mater. Res. Innovat. 19: 160–165, https://doi.org/10.1179/1433075x14y.0000000236.Search in Google Scholar

Toghill, K.E. and Compton, R.G. (2010). Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5: 1246–1301.10.1016/S1452-3981(23)15359-4Search in Google Scholar

Tomanin, P.P., Cherepanov, P.V., Besford, Q.A., Christofferson, A.J., Amodio, A., McConville, C.F., Yarovsky, I., and Cavalieri, F. (2018). Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. Interfaces 10: 42786–42795, https://doi.org/10.1021/acsami.8b12966.Search in Google Scholar PubMed

Tonyushkina, K. and Nichols, J.H. (2009). Glucose meters: a review of technical challenges to obtaining accurate results. J. Diabetes Sci. Technol. 3: 971–980, https://doi.org/10.1177/193229680900300446.Search in Google Scholar PubMed PubMed Central

Vinoth, S., Rajaitha, P.M., Venkadesh, A., Devi, K.S.S., Radhakrishnan, S., and Pandikumar, A. (2020). Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose. Nanoscale Adv. 2: 4242–4250, https://doi.org/10.1039/d0na00172d.Search in Google Scholar PubMed PubMed Central

Vinoth, V., Subramaniyam, G., Anandan, S., Valdés, H., and Manidurai, P. (2021). Non-enzymatic glucose sensor and photocurrent performance of zinc oxide quantum dots supported multi-walled carbon nanotubes. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 265: 115036, https://doi.org/10.1016/j.mseb.2020.115036.Search in Google Scholar

Wahab, H.A., Salama, A.A., El Saeid, A.A., Willander, M., Nur, O., and Battisha, I.K. (2018). Zinc oxide nano-rods based glucose biosensor devices fabrication. Results Phys. 9: 809–814, https://doi.org/10.1016/j.rinp.2018.02.077.Search in Google Scholar

Wang, L., Peng, C., Yang, H., Miao, L., Xu, L., Wang, L., and Song, Y. (2019). Ni@carbon nanocomposites/macroporous carbon for glucose sensor. J. Mater. Sci. 54: 1654–1664, https://doi.org/10.1007/s10853-018-2878-z.Search in Google Scholar

Wang, L., Zhang, Y., Xie, Y., Yu, J., Yang, H., Miao, L., and Song, Y. (2017a). Three-dimensional macroporous carbon/hierarchical Co 3 O 4 nanoclusters for nonenzymatic electrochemical glucose sensor. Appl. Surf. Sci. 402: 47–52, https://doi.org/10.1016/j.apsusc.2017.01.062.Search in Google Scholar

Wang, L., Zhang, Y., Yu, J., He, J., Yang, H., Ye, Y., and Song, Y. (2017b). A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sensor. Actuator. B Chem. 239: 172–179, https://doi.org/10.1016/j.snb.2016.06.173.Search in Google Scholar

Wang, L., Miao, X., Qu, Y., Duan, C., Wang, B., Yu, Q., Gao, J., Song, D., Li, Y., and Yin, Z. (2020a). Rattle-type Au@NiCo LDH hollow core-shell nanostructures for nonenzymatic glucose sensing. J. Electroanal. Chem. 858: 113810, https://doi.org/10.1016/j.jelechem.2019.113810.Search in Google Scholar

Wang, R., Lou, J., Fang, J., Cai, J., Hu, Z., and Sun, P. (2020b). Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. Rev. Chem. Eng. 36: 947–970, https://doi.org/10.1515/revce-2018-0076.Search in Google Scholar

Wang, Z., Zhang, J., Jian, R., Liao, J., Xiong, X., and Huang, K. (2020c). Room temperature ultrafast synthesis of zinc oxide nanomaterials via hydride generation for non-enzymatic glucose detection. Microchem. J. 159: 105396, https://doi.org/10.1016/j.microc.2020.105396.Search in Google Scholar

Weina, X., Guanlin, L., Chuanshen, W., Hu, C., and Wang, X. (2017). A novel β-MnO2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for high-performance enzymeless glucose sensing. Electrochim. Acta 225: 121–128, https://doi.org/10.1016/j.electacta.2016.12.130.Search in Google Scholar

Weremfo, A., Fong, S.T.C., Khan, A., Hibbert, D.B., and Zhao, C. (2017). Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim. Acta 231: 20–26, https://doi.org/10.1016/j.electacta.2017.02.018.Search in Google Scholar

Wiorek, A., Parrilla, M., Cuartero, M., and Crespo, G.A. (2020). Epidermal patch with glucose biosensor: PH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem. 92: 10153–10161, https://doi.org/10.1021/acs.analchem.0c02211.Search in Google Scholar PubMed PubMed Central

Wu, F., Xie, Q., Yang, X., Yuejun, O., and Hu, Y. (2018). Facile preparation of PtNPs/BSA-RGO nanostructure for non-enzymatic glucose electrochemical sensing. Int. J. Electrochem. Sci. 13: 9784–9793, https://doi.org/10.20964/2018.10.50.Search in Google Scholar

Wu, G.H., Song, X.H., Wu, Y.F., Chen, X.M., Luo, F., and Chen, X. (2013). Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105: 379–385, https://doi.org/10.1016/j.talanta.2012.10.066.Search in Google Scholar PubMed

Xu, J., Chen, T., Qiao, X., Sheng, Q., Yue, T., and Zheng, J. (2019). The hybrid of gold nanoparticles and Ni(OH)2 nanosheet for non-enzymatic glucose sensing in food. Colloids Surf. A Physicochem. Eng. Asp. 561: 25–31, https://doi.org/10.1016/j.colsurfa.2018.10.067.Search in Google Scholar

Xu, M., Song, Y., Ye, Y., Gong, C., Shen, Y., Wang, L., and Wang, L. (2017). A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensor. Actuator. B Chem. 252: 1187–1193, https://doi.org/10.1016/j.snb.2017.07.147.Search in Google Scholar

Xuan, X., Yoon, H.S., and Park, J.Y. (2018). A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109: 75–82, https://doi.org/10.1016/j.bios.2018.02.054.Search in Google Scholar PubMed

Yadav, H.M. and Lee, J.J. (2019). One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J. Solid State Electrochem. 23: 503–512, https://doi.org/10.1007/s10008-018-4137-2.Search in Google Scholar

Ye, J.S., Chen, C.W., and Lee, C.L. (2015a). Pd nanocube as non-enzymatic glucose sensor. Sensor. Actuator. B Chem. 208: 569–574, https://doi.org/10.1016/j.snb.2014.11.091.Search in Google Scholar

Ye, J.S., Liu, Z.T., Lai, C.C., Lo, C.T., and Lee, C.L. (2015b). Diameter effect of electrospun carbon fiber support for the catalysis of Pt nanoparticles in glucose oxidation. Chem. Eng. J. 283: 304–312, https://doi.org/10.1016/j.cej.2015.07.071.Search in Google Scholar

Zang, G., Hao, W., Li, X., Huang, S., Gan, J., Luo, Z., and Zhang, Y. (2018). Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta 277: 176–184, https://doi.org/10.1016/j.electacta.2018.05.016.Search in Google Scholar

Zeng, G., Li, W., Ci, S., Jia, J., and Wen, Z. (2016). Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Sci. Rep. 6: 1–8, https://doi.org/10.1038/srep36454.Search in Google Scholar PubMed PubMed Central

Zhang, H. and Liu, S. (2017). A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing. J. Colloid Interface Sci. 485: 159–166, https://doi.org/10.1016/j.jcis.2016.09.041.Search in Google Scholar PubMed

Zhang, J., Chen, L., and Yang, K. (2019). In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor. Ionics 25: 4447–4457, https://doi.org/10.1007/s11581-019-02996-5.Search in Google Scholar

Zhang, L., Ding, Y., Li, R., Ye, C., Zhao, G., and Wang, Y. (2017a). Ni-based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 5: 5549–5555, https://doi.org/10.1039/c7tb01363a.Search in Google Scholar

Zhang, Y., Li, N., Xiang, Y., Wang, D., Zhang, P., Wang, Y., Lu, S., Xu, R., and Zhao, J. (2020). A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156: 506–513, https://doi.org/10.1016/j.carbon.2019.10.006.Search in Google Scholar

Zhang, Z., Pan, P., Liu, X., Yang, Z., Wei, J., and Wei, Z. (2017b). 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187: 28–38, https://doi.org/10.1016/j.matchemphys.2016.11.032.Search in Google Scholar

Zhao, A., Zhang, Z., Zhang, P., Xiao, S., Wang, L., Dong, Y., Yuan, H., Li, P., Sun, Y., Jiang, X., et al.. (2016a). 3D nanoporous gold scaffold supported on graphene paper: freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. Anal. Chim. Acta 938: 63–71, https://doi.org/10.1016/j.aca.2016.08.013.Search in Google Scholar PubMed

Zhao, Y., Cao, L., Li, L., Cheng, W., Xu, L., Ping, X., Pan, L., and Shi, Y. (2016b). Conducting polymers and their applications in diabetes management. Sensors 16: 1–14, https://doi.org/10.3390/s16111787.Search in Google Scholar PubMed PubMed Central

Zheng, L. (2013). Nano-structured Ni (II)-baicalein modified multiwall carbon nanotube paste electrode for the electrocatalytic oxidation of hydroxylamine. Adv. Mater. Res. 631: 30–34, https://doi.org/10.4028/www.scientific.net/amr.631-632.30.Search in Google Scholar

Zheng, W., Li, Y., Liu, M., Tsang, C.S., Lee, L.Y.S., and Wong, K.Y. (2018). Cu2+doped carbon nitride/MWCNT as an electrochemical glucose sensor. Electroanalysis 30: 1446–1454, https://doi.org/10.1002/elan.201800076.Search in Google Scholar

Zhong, G.X., Zhang, W.X., Sun, Y.M., Wei, Y.Q., Lei, Y., Peng, H.P., Liu, A.L., Chen, Y.Z., and Li, X.H. (2015). A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensor. Actuator. B Chem. 212: 72–77, https://doi.org/10.1016/j.snb.2015.02.003.Search in Google Scholar

Zhong, S.L., Zhuang, J., Yang, D.P., and Tang, D. (2017). Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosens. Bioelectron. 96: 26–32, https://doi.org/10.1016/j.bios.2017.04.038.Search in Google Scholar PubMed

Zhong, Y., Shi, T., Liu, Z., Cheng, S., Huang, Y., Tao, X., Liao, G., and Tang, Z. (2016). Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sensor. Actuator. B Chem. 236: 326–333, https://doi.org/10.1016/j.snb.2016.06.020.Search in Google Scholar

Zhou, W., He, Q., Ye, H., Ye, C., Wu, X., and Chu, J. (2021). Recent advances in flexible sweat glucose biosensors. J. Phys. D Appl. Phys. 54: 423001, https://doi.org/10.1088/1361-6463/ac14ef.Search in Google Scholar

Zhou, Y., Li, J., Wang, S., Zhang, J., and Kang, Z. (2017). From MOF membrane to 3D electrode: a new approach toward an electrochemical non-enzymatic glucose biosensor. J. Mater. Sci. 52: 12089–12097, https://doi.org/10.1007/s10853-017-1349-2.Search in Google Scholar

Zhu, H., Li, L., Zhou, W., Shao, Z., and Chen, X. (2016). Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. 4: 7333–7349, https://doi.org/10.1039/c6tb02037b.Search in Google Scholar PubMed

Zhu, J., Liu, S., Hu, Z., Zhang, X., Yi, N., Tang, K., Dexheimer, M. G., Lian, X., Wang, Q., Yang, J., Gray, J., and Cheng, H. (2021). Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 193: 113606.10.1016/j.bios.2021.113606Search in Google Scholar PubMed PubMed Central

Received: 2022-10-23
Accepted: 2022-12-19
Published Online: 2023-02-28
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0058/html
Scroll to top button