Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 29, 2021

Application of micro and porous materials as nano-reactors

  • Lawal Adedoyin Isola , Tzu-Chia Chen , Marischa Elveny EMAIL logo , Ayad F. Alkaim , Lakshmi Thangavelu and Ehsan Kianfar EMAIL logo

Abstract

In general, nanostructured materials with specific size, shape and geometry have unique and different properties from bulk materials. Using reaction media with nanometer and micrometer dimensions, they can produce new nanomaterials with interesting and remarkable properties. In general, nano-reactors are nanometer-sized chambers in which chemical reactions can take place. of course, nanoreactors are somehow part of the reaction, and this is the main difference between them and micro-reactors. One of the useful solutions to achieve the environment of nanoreactors is the use of porous materials, so due to the importance of nanoreactors, porous structures of silicate and zeolite are among the most prominent and widely used compounds in this group.


Corresponding authors: Marischa Elveny, Data Science & Computational Intelligence Research Group, Universitas Sumatera Utara, Medan, Indonesia, E-mail: ; and Ehsan Kianfar, SDG 8 (Decent Work and Economic Growth) Research Cluster, Landmark University, Omu-Aran, Nigeria; Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran; and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alauzun, J.; Mehdi, A.; Reyé, C.; Corriu, R. J. P. Mesoporous materials with an acidic framework and basic pores. A successful cohabitation. J. Am. Chem. Soc. 2006, 128, 8718–8719; https://doi.org/10.1021/ja0622960.Search in Google Scholar

Avram, L.; Cohen, Y. Molecules at close range: encapsulated solvent molecules in Pyrogallol [4] arene hexameric capsules. Org. Lett. 2006, 8, 219–222; https://doi.org/10.1021/ol052459+.10.1021/ol052459+Search in Google Scholar

Bechthold, N.; Tiarks, F.; Willert, M.; Landfester, K.; Antonietti, M. Miniemulsion polymerization: applications and new materials. Macromol. Symp 2000, 151, 549–555.10.1002/1521-3900(200002)151:1<549::AID-MASY549>3.0.CO;2-DSearch in Google Scholar

Bermudez, O.; Forciniti, D. Decontamination of surfaces by lysozyme encapsulated in reverse micelles. J. Chromatogr. B 2004, 807, 95–103; https://doi.org/10.1016/j.jchromb.2004.02.010.Search in Google Scholar

Brinker, U. H. Molecular Encapsulation; WILEY-VCH Verlag GmbH & Co: Weinheim, Germany, 2010.10.1002/9780470664872Search in Google Scholar

Cabane, E.; Malinova, V.; Meier, W. Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers. Macromol. Chem. Phys. 2010, 211, 1847–1856; https://doi.org/10.1002/macp.201000151.Search in Google Scholar

Carrot, G.; Valmalette, J. C.; Plummer, C. J. G.; Scholz, S. M.; Dutta, J.; Hofmann, H.; Hilborn, J. G. Gold nanoparticle synthesis in graft copolymer micelles. Colloid Polym. Sci. 1998, 276, 853–859; https://doi.org/10.1007/s003960050321.Search in Google Scholar

Caruthers, S. D.; Wickline, S. A.; Lanza, G. M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007, 18, 26–30; https://doi.org/10.1016/j.copbio.2007.01.006.Search in Google Scholar

Carvalho, C. M. L.; Cabral, J. Reverse micelles as reaction media for lipases. Biochimie 2000, 82, 1063–1085; https://doi.org/10.1016/s0300-9084(00)01187-1.Search in Google Scholar

Chen, H.; Zeng, G.; Wang, Z.; Zhang, X.; Peng, M.-L.; Wu, L.-Z.; Tung, C.-H. To combine precursor assembly and layer-by-layer deposition for incorporation of single-charged species: nanocontainers with charge-selectivity and nanoreactors. Chem. Mater. 2005, 17, 6679–6685; https://doi.org/10.1021/cm051959u.Search in Google Scholar

Chen, H.-L.; Wang, G.; Ma, C.; Cai, Z.-N.; Liu, W.-B.; Wang, S.-J. An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson′ s disease. Neurocomputing 2016, 184, 131–144; https://doi.org/10.1016/j.neucom.2015.07.138.Search in Google Scholar

Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219; doi: https://doi.org/10.1002/aenm.201801219.Search in Google Scholar

Chen, X.; Wang, D.; Wang, T.; Yang, Z.; Zou, X.; Wang, P.; Luo, W.; Li, Q.; Liao, L.; Hu, W.; Wei, Z. Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 2019, 11, 33188–33193; doi: https://doi.org/10.1021/acsami.9b07891.Search in Google Scholar PubMed

Chen, H.; Heidari, A. A.; Chen, H.; Wang, M.; Pan, Z.; Gandomi, A. H. Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Future Generat. Comput. Syst. 2020a, 111, 175–198; https://doi.org/10.1016/j.future.2020.04.008.Search in Google Scholar

Chen, C.; Wang, X.; Wang, Y.; Yang, D.; Yao, F.; Zhang, W.; Wang, B.; Sewvandi, G. A.; Yang, D.; Hu, D. Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. 2020b, 30, 2005141; https://doi.org/10.1002/adfm.202005141.Search in Google Scholar

Couvreur, P.; Barratt, G.; Fattal, E.; Vauthier, C. Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 99; https://doi.org/10.1615/critrevtherdrugcarriersyst.v19.i2.10.Search in Google Scholar PubMed

Dähne, L.; Leporatti, S.; Donath, E.; Möhwald, H. Fabrication of micro reaction cages with tailored properties. J. Am. Chem. Soc. 2001, 123, 5431–5436; https://doi.org/10.1021/ja002911e.Search in Google Scholar PubMed

Dai, Z.; Xie, J.; Fan, X.; Ding, X.; Liu, W.; Zhou, S.; Ren, X. Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 ceramics. Chem. Eng. J. 2020, 397, 125520; https://doi.org/10.1016/j.cej.2020.125520.Search in Google Scholar

Dai, Z.; Xie, J.; Chen, Z.; Zhou, S.; Liu, J.; Liu, W.; Xi, Z.; Ren, X. Improved energy storage density and efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem. Eng. J. 2021, 410, 128341; https://doi.org/10.1016/j.cej.2020.128341.Search in Google Scholar

Dawkins, J. Aqueous Suspension Polymerizations; Pergamon Press plc, Comprehensive Polymer Science: Oxford, UK, Vol. 4, 1989; pp 231–241.10.1016/B978-0-08-096701-1.00129-4Search in Google Scholar

Deraedt, C.; Salmon, L.; Etienne, L.; Ruiz, J. D., Astruc, D. Click dendrimers as efficient nanoreactors in aqueous solvent: Pd nanoparticle stabilization for sub-ppm Pd catalysis of Suzuki-Miyaura reactions of aryl bromides. Astruc Chem. Commun. 2013, 49, 8169; https://doi.org/10.1039/c3cc45132a.Search in Google Scholar PubMed

Ding, S.; Chen, J. S.; Qi, G.; Duan, X.; Wang, Z.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 2011, 133, 21–23; doi: https://doi.org/10.1021/ja108720w.Search in Google Scholar PubMed

Duan, Z.; Li, C.; Ding, W.; Zhang, Y.; Yang, M.; Gao, T.; Cao, H.; Xu, X.; Wang, D.; Mao, C.; Li, H. N.; Kumar, G. M.; Said, Z.; Debnath, S.; Jamil, M.; Ali, H. M. Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin. J. Mech. Eng. 2021, 34, 18; https://doi.org/10.1186/s10033-021-00536-9.Search in Google Scholar

Faghih, S. M.; Kianfar, E. Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int. J. Chem. React. Eng. 2018, 16, 1–14; https://doi.org/10.1515/ijcre-2018-0006.Search in Google Scholar

Fan, J.; Shui, W.; Yang, P.; Wang, X.; Xu, Y.; Wang, H.; Chen, X.; Zhao, D. Mesoporous silica nanoreactors for highly efficient proteolysis. Chem. Eur. J. 2005, 11, 5391–5396; https://doi.org/10.1002/chem.200500060.Search in Google Scholar PubMed

Gao, C.; Liao, J.; Lu, J.; Ma, J.; Kianfar, E. The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. 2021, 41, 1–20; doi: https://doi.org/10.1515/revic-2020-0007.Search in Google Scholar

Graff, A.; Winterhalter, M.; Meier, W. Nanoreactors from polymer-stabilized liposomes. Langmuir 2001, 17, 919–923; https://doi.org/10.1021/la001306m.Search in Google Scholar

Hajimirzaee, S.; Mehr, A. S.; Kianfar, E. Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycycl. Aromat. Comp. 2020; https://doi.org/10.1080/10406638.2020.1833048.Search in Google Scholar

Han, B. H.; Smarsly, B.; Gruber, C.; Wenz, G. Towards porous silica materials via nanocasting of stable pseudopolyrotaxanes from [alpha]-cyclodextrin and polyamines. Microporous Mesoporous Mater. 2003, 66, 127–132; https://doi.org/10.1016/j.micromeso.2003.09.003.Search in Google Scholar

Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J. Mater. Chem. 2009, 20, 844–857.10.1039/B907869JSearch in Google Scholar

He, J.; Kunitake, T.; Nakao, A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 2003, 15, 4401–4406; https://doi.org/10.1021/cm034720r.Search in Google Scholar

Hu, J.; Bando, Y.; Golberg, D. Novel semiconducting nanowire heterostructures: synthesis, properties and applications. J. Mater. Chem. 2008, 19, 330–343.10.1039/B808320GSearch in Google Scholar

Hu, J.; Chen, H.; Heidari, A. A.; Wang, M.; Zhang, X.; Chen, Y.; Pan, Z. Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl. Base Syst. 2021, 213, 106684.10.1016/j.knosys.2020.106684Search in Google Scholar

Hu, L.; Hong, G.; Ma, J.; Wang, X.; Chen, H. An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Comput. Biol. Med. 2015, 59, 116–124; https://doi.org/10.1016/j.compbiomed.2015.02.003.Search in Google Scholar

Huang, B.; Changhe, L.; Zhang, Y.; Wenfeng, D.; Min, Y.; Yuying, Y.; Han, Z.; Xuefeng, X.; Wang, D.; Sujan, D.; Muhammad, J.; Li, H. N.; Hafiz Muhammad, A. L. I.; Gupta, M. K.; Zafar, S. Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin. J. Aeronaut. 2021, 34, 1–17; https://doi.org/10.1016/j.cja.2020.07.004.Search in Google Scholar

Ingert, D.; Pileni, M. P. Limitations in producing nanocrystals using reverse micelles as nanoreactors. Adv. Funct. Mater. 2001, 11, 136–139; https://doi.org/10.1002/1616-3028(200104)11:2<136::aid-adfm136>3.0.co;2-3.10.1002/1616-3028(200104)11:2<136::AID-ADFM136>3.0.CO;2-3Search in Google Scholar

Jang, J.; Oh, J. H. Facile fabrication of photochromic dye–conducting polymer core–shell nanomaterials and their photoluminescence. Adv. Mater. 2003, 15, 977–980; https://doi.org/10.1002/adma.200304819.Search in Google Scholar

Jiang, C.; Fang, Y.; Zhang, W.; Song, X.; Lang, J.; Shi, L.; Tang, Y. A multi-ion strategy towards rechargeable sodium-ion full batteries with high working voltage and rate capability. Angew. Chem. Int. Ed. 2018, 57, 16370; doi: https://doi.org/10.1002/anie.201810575.Search in Google Scholar

Joly, S.; Kane, R.; Radzilowski, L.; Wang, T.; Wu, A.; Cohen, R. E.; Thomas, E. L.; Rubner, M. F. Multilayer nanoreactors for metallic and semiconducting particles. Langmuir 2000, 16, 1354–1359; https://doi.org/10.1021/la991089t.Search in Google Scholar

Karimi, B.; Zareyee, D. Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org. Lett. 2008, 10, 3989–3992; https://doi.org/10.1021/ol8013107.Search in Google Scholar

Kianfar, E. Production and identification of vanadium oxide nanotubes. Indian J. Sci. Technol. 2015, 8, 455–464; https://doi.org/10.17485/ijst/2015/v8is9/68569.Search in Google Scholar

Kianfar, E. The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 2016, 4, 27–42.Search in Google Scholar

Kianfar, E. Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 2018, 91, 1711–1720; https://doi.org/10.1134/S1070427218100208.Search in Google Scholar

Kianfar, E. Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ. J. Appl. Chem. 2019a, 92, 1094–1101; https://doi.org/10.1134/S1070427219080068.Search in Google Scholar

Kianfar, E. Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ. J. Appl. Chem. 2019b, 92, 933–939; https://doi.org/10.1134/S1070427219070085.Search in Google Scholar

Kianfar, E. Nanozeolites: synthesized, properties, applications. J. Sol. Gel Sci. Technol. 2019c, 91, 415–429; https://doi.org/10.1007/s10971-019-05012-4.Search in Google Scholar

Kianfar, E. Comparison and assessment of Zeolite Catalysts performance Dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 2019d, 39, 157–177; https://doi.org/10.1515/revic-2019-0001.Search in Google Scholar

Kianfar, E. Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem. J. 2019e, 145, 966–978; https://doi.org/10.1016/j.microc.2018.12.008.Search in Google Scholar

Kianfar, E. Synthesizing of Vanadium Oxide Nanotubes using Hydrothermal and Ultrasonic Method, ISBN 978-613-9-81541-8; Springer: New York, USA, Vol. 1, 2020a; pp 1–80.Search in Google Scholar

Kianfar, E. Investigation on Catalysts of “Methanol to Light Olefins”, ISBN 978-620-3-19402-9; Lambert Academic Publishing: Netherlands, Vol. 1, 2020b; pp 1–168.Search in Google Scholar

Kianfar, E. Application of Nanotechnology in Enhanced Recovery Oil and Gas Importance & Applications of Nanotechnology; MedDocs Publishers: Republic of Moldova, Vol. 5, 2020c, Chapter 3; pp 16–21.Search in Google Scholar

Kianfar, E. Catalytic Properties of Nanomaterials and Factors Affecting it Importance & Applications of Nanotechnology; Universal Wiser Publisher Pte. Ltd: Singapore, Vol. 5, 2020d, Chapter 4; pp 22–25; https://doi.org/10.37256/fce.212021693.Search in Google Scholar

Kianfar, E. Introducing the Application of Nanotechnology in Lithium-Ion Battery Importance & Applications of Nanotechnology; Nova Science Publishers, Inc: Hauppauge, USA, Vol. 4, 2020e, Chapter 4; pp 1–7.Search in Google Scholar

Kianfar, E. Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chem. Eng. 2020f, 1, 69–74.10.37256/fce.122020477Search in Google Scholar

Kianfar, E. An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chem. Eng. 2020g, 1, 92–103.10.37256/fce.122020552Search in Google Scholar

Kianfar. A comparison and assessment on performance of zeolite catalyst based selective for theProcess methanol to gasoline: a review. In Advances in Chemistry Research; Nova Science Publishers, Inc.: NewYork, Vol. 63, Chapter 2, 2020h.Search in Google Scholar

Kianfar, E. Synthesis of Characterization Nanoparticles Isophthalic Acid/Aluminum Nitrate (CAU-10-H) using Method Hydrothermal. Advances in Chemistry Research; Nova Science Publishers, Inc.: NY, USA, 2020i.Search in Google Scholar

Kianfar, E. CO2 Capture with Ionic Liquids: A Review. Advances in Chemistry Research; Nova Science Publishers, Inc.: NY, USA, Vol. 67, 2020j.Search in Google Scholar

Kianfar, E. Enhanced Light Olefins Production via Methanol Dehydration over Promoted SAPO-34. Advances in Chemistry Research; Nova Science Publishers, Inc.: NY, USA, Vol. 63, Chapter: 4, 2020k.Search in Google Scholar

Kianfar, E. Zeolites: properties, applications, modification and selectivity. In Book: Zeolites: Advances in Research and Applications, Edition; Mahler, A., Ed. Chapter: 1; Nova Science Publishers, Inc.: NY, USA, 2020l.Search in Google Scholar

Kianfar, E. Gas Hydrate: Applications, Structure, Formation, Separation Processes, Thermodynamics. Advances in Chemistry Research, Edition; J. C. Taylor. Chapter: 8; Nova Science Publishers, Inc.: NY, USA, Vol. 62, 2020m.Search in Google Scholar

Kianfar, E. Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Petrol. Chem. 2021a, 61, 527–537; https://doi.org/10.1134/S0965544121050030.Search in Google Scholar

Kianfar, E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol. 2021b, 19, 159; https://doi.org/10.1186/s12951-021-00896-3.Search in Google Scholar PubMed PubMed Central

Kianfar, E. Magnetic nanoparticles in targeted drug delivery: a review. J. Supercond. Nov. Magnetism 2021c; https://doi.org/10.1007/s10948-021-05932-9.Search in Google Scholar

Kianfar, E.; Ali, R. Zeolite catalyst based selective for the process MTG: a review. In Book: Zeolites: Advances in Research and Applications, Edition; Mahler, A., Ed. Chapter: 8; Nova Science Publishers, Inc.: NY, USA, 2020.Search in Google Scholar

Kianfar, F.; Kianfar, E. Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J. Inorg. Organomet. Polym. 2019, 29, 2176–2185; https://doi.org/10.1007/s10904-019-01177-1.Search in Google Scholar

Kianfar, E.; Mafi, S. Ionic liquids: properties, application, and synthesis. Fine Chem. Eng. 2020, 2, 22–31; https://doi.org/10.37256/fce.212021693.Search in Google Scholar

Kianfar, E.; Mazaheri, H. Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chem. Eng. 2020a, 1, 83–91.10.37256/fce.122020544Search in Google Scholar

Kianfar, E.; Mazaheri, H. Methanol to gasoline: a sustainable transport fuel. In Book: Advances in Chemistry Research, Edition; J. C. Taylor Chapter: 4; Nova Science Publishers, Inc.: NY, USA, Vol. 66, 2020b.Search in Google Scholar

Kianfar, E.; Salimi, M. A review on the production of light olefins from hydrocarbons cracking and methanol conversion. In Book: Advances in Chemistry Research:Edition; J. C. Taylor Chapter: 1; Nova Science Publishers, Inc.: NY, USA, Vol. 59, 2020.Search in Google Scholar

Kianfar, E.; Viet, C. Polymeric membranes on base of PolyMethyl methacrylate for air separation: a review. J. Mater. Res. Technol. 2021, 10, 1437–1461; https://doi.org/10.1016/j.jmrt.2020.12.061.Search in Google Scholar

Kianfar, E.; Baghernejad, M.; Rahimdashti, Y. Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biol. Forum 2015a, 7, 1671–1685.Search in Google Scholar

Kianfar, F.; Mahdavi Moghadam1, S. R.; Kianfar, E. Energy optimization of ilam gas refinery unit 100 by using HYSYS refinery software(2015). Indian J. Sci. Technol. 2015b, 8, 431–436; https://doi.org/10.17485/ijst/2015/v8is9/68558.Search in Google Scholar

Kianfar, F.; Mahdavi Moghadam, S. R.; Kianfar, E. Synthesis of spiro pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J. Sci. Technol. 2015c, 8, 68669; https://doi.org/10.17485/ijst/2015/v8i11/71776.Search in Google Scholar

Kianfar, M.; Kianfar, F.; Kianfar, E. The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. Am. J. Oil Chem. Technol. 2016, 4, 29–44.Search in Google Scholar

Kianfar, E.; Pirouzfar, V.; Sakhaeinia, H. An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng. 2017, 80, 954–962; https://doi.org/10.1016/j.jtice.2017.08.017.Search in Google Scholar

Kianfar, E.; Shirshahi, M.; Kianfar, F.; Kianfar, F. Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. Silicon 2018a, 10, 2617–2625; https://doi.org/10.1007/s12633-018-9798-z.Search in Google Scholar

Kianfar, E.; Salimi, M.; Hajimirzaee, S.; Koohestani, B. Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng. 2018b, 17.10.1515/ijcre-2018-0127Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol. 2018c, 15, 734–741; https://doi.org/10.1111/ijac.12830.Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. React. Eng. 2018d, 16, 20170229; https://doi.org/10.1515/ijcre-2017-0229.Search in Google Scholar

Kianfar, E.; Salimi, M.; Kianfar, F.; Kianfar, M.; Razavikia, S. A. H. CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 2019, 27, 83–89; https://doi.org/10.1007/s13233-019-7009-4.Search in Google Scholar

Kianfar, E.; Azimikia, R.; Faghih, S. M. Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal. Lett. 2020a, 150, 2322–2330; https://doi.org/10.1007/s10562-020-03116-z.Search in Google Scholar

Kianfar, E.; Hajimirzaee, S.; Musavian, S. S.; Mehr, A. S. Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J. 2020b, 104822; https://doi.org/10.1016/j.microc.2020.104822.Search in Google Scholar

Kianfar, E.; Salimi, M.; Koohestani, B. Zeolite CATALYST: A Review on the Production of Light Olefins, ISBN 978-620-3-04259-7; Lambert Academic Publishing: Republic of Moldova, Vol. 1, 2020c; pp 1–116.Search in Google Scholar

Kianfar, E.; Salimi, M.; Koohestani, B. Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem. Eng. 2020d, 1, 75–82.10.37256/fce.122020499Search in Google Scholar

Kianfar, E.; Joshaghani, H.; Razavikia, S. A. Introducing the Application of Nanotechnology in Lithium-Ion Battery Importance & Applications of Nanotechnology; MedDocs Publishers, Vol. 4, Chapter 4, 2020e; pp 1–7.Search in Google Scholar

Kianfar, E.; Zhu, Y.; Kianfar, E. Nano biosensors: properties, applications and electrochemical techniques. J. Mater. Res. Technol. 2021; https://doi.org/10.1016/j.jmrt.2021.03.048.Search in Google Scholar

Kim, K. T.; Meeuwissen, S. A.; Nolte, R. J. M.; van Hest, J. C. M. Smart nanocontainers and nanoreactors. Nanoscale 2010, 2, 844–858; https://doi.org/10.1039/b9nr00409b.Search in Google Scholar PubMed

Kishimura, A.; Liamsuwan, S.; Matsuda, H.; Dong, W. F.; Osada, K., Yamasaki, Y., Kataoka, K. pH-dependent permeability change and reversible structural transition of PEGylated polyion complex vesicles (PICsomes) in aqueous media. Soft Matter 2009, 5, 529–532; https://doi.org/10.1039/b815884c.Search in Google Scholar

Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 2008, 37, 247–262; https://doi.org/10.1039/b614961h.Search in Google Scholar PubMed

Kuiper, S. M.; Nallani, M.; Vriezema, D. M.; Hest, J. C. M. V.; Nolte, R. J. M.; Nolte, R. J. M.; Rowan, A. E. Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions. Org. Biomol. Chem. 2008, 6, 4315–4318; doi: https://doi.org/10.1039/b811196k.Search in Google Scholar PubMed

Landfester, K. Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res. 2006, 36, 231–279; https://doi.org/10.1146/annurev.matsci.36.032905.091025.Search in Google Scholar

Lee, J.; Kim, K. Rotaxane Dendrimers; National Library of Medicine: Bethesda, MD, USA, 2003; pp. 1112393–1402396.Search in Google Scholar

Lee, Y. H.; Kim, S. G.; Tománek, D. Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett. 1997, 78, 2393–2396; https://doi.org/10.1103/physrevlett.78.2393.Search in Google Scholar

Lee, Y.; Lee, J.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Park, J.-H.; Hyeon, T. Large‐scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 2005, 15, 503–509; https://doi.org/10.1002/adfm.200400187.Search in Google Scholar

Li, W-Z.; Kovarik, L.; Mei, D.; Engelhard, M. H.; Gao, F.; Liu, J.; Wang, Y.; Charles, H.; Peden, F. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports. Chem. Mater. 2014, 26, 5475–5481; https://doi.org/10.1021/cm5013203.Search in Google Scholar

Li, C.; Hou, L.; Sharma, B. Y.; Li, H.; Chen, C.; Li, Y.; Zhao, X.; Huang, H.; Cai, Z.; Chen, H. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput. Methods Progr. Biomed. 2018a, 153, 211–225; https://doi.org/10.1016/j.cmpb.2017.10.022.Search in Google Scholar PubMed

Li, H.; Tang, J.; Kang, Y.; ZhaoHaixia, H.; Dan, F.; Fang, X.; Fang, R.; Wei, Z. Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Appl. Phys. Lett. 2018b, 113, 233104; https://doi.org/10.1063/1.5053844.Search in Google Scholar

Liu, H.; Kianfar, E. Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catal. Lett. 2021, 151, 787–802; doi: https://doi.org/10.1007/s10562-020-03333-6.Search in Google Scholar

Liu, Y.; Liu, X.; Warmuth, R. Multicomponent dynamic covalent assembly of a rhombicuboctahedral nanocapsule. Chem. Eur. J. 2007, 13, 8953–8959; https://doi.org/10.1002/chem.200701067.Search in Google Scholar PubMed

Mirkin, C. A.; Niemeyer, C. M., Ed. Nanobiotechnology, Consept, Application, Prespective; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.Search in Google Scholar

Möhwald, H.; Lichtenfeld, H.; Moya, S.; Voigt, A.; Bäumler, H.; Sukhorukov, G.; Caruso, F.; Donath, E. From polymeric films to nanoreactors. Macromol. Symp., 1999, 145, pp. 75–81; https://doi.org/10.1002/masy.19991450109.Search in Google Scholar

Mousavian, S. S.; Faravar, P.; Zarei, Z.; zimikia, R.; Monjezi, M. G.; kianfar, E. Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 2020, 8, 103946; https://doi.org/10.1016/j.jece.2020.103946.Search in Google Scholar

Murali Mohan, Y.; Lee, K.; Premkumar, T.; Geckeler, K. E. Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 2007, 48, 158–164; https://doi.org/10.1016/j.polymer.2006.10.045.Search in Google Scholar

Murcia, M. J.; Naumann, C. A. Biofunctionalization of Fluorescent Nanoparticles; WILEY-VCH: Weinheim, Germany, 2005.Search in Google Scholar

Nallani, M.; de Hoog, H.-P. M.; Cornelissen, J. J. L. M.; Palmans, A. R. A.; van Hest, J. C. M.; Nolte, R. J. M. Polymersome nanoreactors for enzymatic ring-opening polymerization. Biomacromolecules 2007, 8, 3723–3728; https://doi.org/10.1021/bm7005938.Search in Google Scholar PubMed

Nardin, C.; Thoeni, S.; Widmer, J.; Winterhalter, M.; Meier, W. Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem. Commun. 2000, 1433–1434; https://doi.org/10.1039/b004280n.Search in Google Scholar

Neumann, T.; Haupt, B.; Ballauff, M. High activity of enzymes immobilized in colloidal nanoreactors. Macromol. Biosci. 2004, 4, 13–16; https://doi.org/10.1002/mabi.200300053.Search in Google Scholar PubMed

Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. Unusual [2+ 4] and [2+ 2] cycloadditions of arenes in the confined cavity of self-assembled cages. J. Am. Chem. Soc. 2007, 129, 7000–7001; https://doi.org/10.1021/ja071591x.Search in Google Scholar PubMed

O’Reilly, R. Spherical polymer micelles: nanosized reaction vessels? Phil. Trans. Math. Phys. Eng. Sci. 2007, 365, 2863–2878; https://doi.org/10.1098/rsta.2007.0019.Search in Google Scholar PubMed

Ostafin, A.; Chen, Y. C. Nanoreactors. Kirk-Othmer Encyclopedia of Chemical Technology; Ensenada, Baja: California, México, 2000.Search in Google Scholar

Ostafin, A.; Landfester, K. Nanoreactor Engineering for Life Sciences and Medicine; Artech House: Boston, MA, 2009.Search in Google Scholar

Qin, P. P.; Wang, M.; Li, N.; Zhu, H. L.; Ding, X.; Tang, Y. B. Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 2017, 29, 1606805; doi: https://doi.org/10.1002/adma.201606805.Search in Google Scholar PubMed

Ronstein, L. M.; Sidorov, S. N.; Valetsky, P. M.; Hartmann, J.; Cölfen, H.; Antonietti, M. Induced micellization by interaction of poly (2-vinylpyridine)-block-poly (ethylene oxide) with metal compounds. Micelle characteristics and metal nanoparticle formation. Langmuir 1999, 15, 6256–6262; https://doi.org/10.1021/la990146f.Search in Google Scholar

Rossbach, B. M.; Leopold, K.; Weberskirch, R. Self‐Assembled nanoreactors as highly active catalysts in the hydrolytic kinetic resolution (HKR) of epoxides in water. Angew. Chem. Int. Ed. 2006, 45, 1309–1312; https://doi.org/10.1002/anie.200503291.Search in Google Scholar

Ryu, E. H.; Cho, H. K.; Zhao, Y. Catalyzing methanolysis of alkyl halides in the interior of an amphiphilic molecular basket. Org. Lett. 2007, 9, 5147–5150; https://doi.org/10.1021/ol701883u.Search in Google Scholar

Saito, Y.; Yoshikawa, T.; Okuda, M.; Fujimoto, N.; Sumiyama, K.; Suzuki, K.; Kasuya, A.; Nishina, Y. Carbon nanocapsules encaging metals and carbides. J. Phys. Chem. Solid. 1993, 54, 1849–1860; https://doi.org/10.1016/0022-3697(93)90298-6.Search in Google Scholar

Salimi, M.; Pirouzfar, V.; Kianfar, E. Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym. Sci. 2017a, 295, 215–226; https://doi.org/10.1007/s00396-016-3998-0.Search in Google Scholar

Salimi, M.; Pirouzfar, V.; Kianfar, E. Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym. Sci. 2017b, 59, 566–574; https://doi.org/10.1134/S0965545X17040071.Search in Google Scholar

Samuelson, L.; Liu, W.; Nagarajan, R.; Kumar, J.; Bruno, F. F.; Cholli, A.; Tripathy, S. Nanoreactors for the enzymatic synthesis of conducting polyaniline. Synth. Met. 2001, 119, 271–272; doi: https://doi.org/10.1016/s0379-6779(00)01452-1.Search in Google Scholar

San Choi, W.; Koo, H. Y.; Park, J.-H.; Kim, D.-Y. Synthesis of two types of nanoparticles in polyelectrolyte capsule nanoreactors and their dual functionality. J. Am. Chem. Soc. 2005, 127, 16136–16142; https://doi.org/10.1021/ja053981u.Search in Google Scholar PubMed

Shan, W.; Qiao, Z.; Heidari, A. A.; Chen, H.; Turabieh, H.; Teng, Y. Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Knowl. Base Syst. 2021, 214, 106728.10.1016/j.knosys.2020.106728Search in Google Scholar

Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving support vector machines using fruit fly optimization for medical data classification. Knowl. Base Syst. 2016, 96, 61–75; https://doi.org/10.1016/j.knosys.2016.01.002.Search in Google Scholar

Shi, X.; Shen, M.; Möhwald, H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials. Prog. Polym. Sci. 2004, 29, 987–1019; https://doi.org/10.1016/j.progpolymsci.2004.07.001.Search in Google Scholar

Sun, M.; Yan, L.; Zhang, L.; Song, L.; Guo, J.; Zhang, H. New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochem. 2019, 78, 108–113; https://doi.org/10.1016/j.procbio.2019.01.004.Search in Google Scholar

Tretyakov, Y. D.; Lukashin, A. V.; Eliseev, A. A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russ. Chem. Rev. 2004, 73, 899; https://doi.org/10.1070/rc2004v073n09abeh000918.Search in Google Scholar

Tu, J.; Chen, H.; Liu, J.; Heidari, A. A.; Zhang, X.; Wang, M.; Ruby, R.; Pham, Q.-V. Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowl. Base Syst. 2021, 212, 106642; https://doi.org/10.1016/j.knosys.2020.106642.Search in Google Scholar

Tong, X.; Zhang, F.; Ji, B.; Sheng, M.; Tang, Y. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 2016, 28, 9979–9985; https://doi.org/10.1002/adma.201603735.Search in Google Scholar PubMed

Vo-Dinh, T., Ed. Nanotechnology in Medicine and Biology Methods, Devices, and Applications; CRP Press: Durham, North Carolina, 2006.Search in Google Scholar

Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Self-Assembled nanoreactors. Chem. Rev. 2005, 105, 1445–1489; https://doi.org/10.1021/cr0300688.Search in Google Scholar PubMed

Vriezema, D. M.; Garcia, P. M. L.; Sancho Oltra, N.; Hatzakis, N. S.; Kuiper, S. M.; Nolte, R. J. M.; Rowan, A. E.; van Hest, J. C. M. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. 2007, 119, 7522–7526; https://doi.org/10.1002/ange.200701125.Search in Google Scholar

Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 2020, 88, 105946; https://doi.org/10.1016/j.asoc.2019.105946.Search in Google Scholar

Wang, Z.; Zhao, Z.; Qiu, J. Carbon nanotube templated synthesis of CeF3 nanowires. Chem. Mater. 2007, 19, 3364–3366; https://doi.org/10.1021/cm070743k.Search in Google Scholar

Wang, Y.; Li, C.; Zhang, Y.; Yang, M.; Li, B.; Jia, D.; Hou, Y.; Mao, C. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J. Clean. Prod. 2016, 127, 487–499; https://doi.org/10.1016/j.jclepro.2016.03.121.Search in Google Scholar

Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84; https://doi.org/10.1016/j.neucom.2017.04.060.Search in Google Scholar

Wang, P.; Li, Z.; Xie, Q.; Duan, W.; Zhang, X.; Han, H. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J. Bionic. Eng. 2021, 18, 55–64; https://doi.org/10.1007/s42235-021-0012-4.Search in Google Scholar

Wells, D. B.; Bhattacharya, S.; Carr, R.; Maffeo, C.; Ho, A.; Comer, J.; Aksimentiev, A. O. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores. Methods Mol. Biol. 2012, 870, 165–186; https://doi.org/10.1007/978-1-61779-773-6_10.Search in Google Scholar PubMed

Xia, J.; Chen, H.; Li, Q.; Zhou, M.; Chen, L.; Cai, Z.; Fang, Y.; Zhou, H. Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach. Comput. Methods Progr. Biomed. 2017, 147, 37–49; https://doi.org/10.1016/j.cmpb.2017.06.005.Search in Google Scholar PubMed

Xu, X.; Chen, H.-L. Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput. 2014, 18, 797–807; https://doi.org/10.1007/s00500-013-1089-4.Search in Google Scholar

Xu, H.; Cui, L.; Tong, N.; Gu, H. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc. 2006, 128, 15582–15583; https://doi.org/10.1021/ja066165a.Search in Google Scholar PubMed

Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf. Sci. 2019, 492, 181–203; https://doi.org/10.1016/j.ins.2019.04.022.Search in Google Scholar

Xu, Y.; Huang, X.; Chen, Y.; Liu, Y.; Xia, L.; Zhang, T.; Lin, H.; Jia, D.; Zhong, B.; Wen, G.; Zhou, Y. A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 2021, 174, 662–672.10.1016/j.carbon.2020.11.044Search in Google Scholar

Yan, U.; Huang, X.; Chen, Y.; Liu, Y.; Xia, L.; Zhang, T.; Lin, H.; Jia, D.; Zhong, B.; Wen, G.; Zhou, Y. A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 2021, 174, 662–672; https://doi.org/10.1016/j.carbon.2020.11.044.Search in Google Scholar

Yang, Y.; Liu, X.; Zhao, J.; Bai, S. Y.; Liu, J.; Liu, J.; Yang, Q. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 2012, 51, 9164–9168; https://doi.org/10.1002/anie.201204829.Search in Google Scholar PubMed

Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Zhang, X.; Hou, Y.; Li, R.; Wang, J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int. J. Mach. Tool Manufact. 2017, 122, 55–65; https://doi.org/10.1016/j.ijmachtools.2017.06.003.Search in Google Scholar

Yang, X.; Li, Q.; Lu, E.; Wang, Z.; Gong, X.; Yu, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhan, W.; Zhang, J.; Dai, S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 2019, 10, 1611; https://doi.org/10.1038/s41467-019-09662-4.Search in Google Scholar PubMed PubMed Central

Yang, Z.; Zhang, L.; Zhou, Y.; Wang, H.; Wen, L.; Kianfar, E. Lichen Wen, and Ehsan Kianfar, Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: a review. Rev. Inorg. Chem. 2020a, 40, 91–105; https://doi.org/10.1515/revic-2020-0003.Search in Google Scholar

Yang, Y.; Chen, H.; Zou, X.; Shi, X.-L.; Liu, W.-D.; Lei, F.; Suo, G.; Hou, X.; Ye, X.; Zhang, L.; Sun, C.; Li, H.; Wang, C.; Chen, Z.-G. Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl. Mater. Interfaces 2020b, 12, 24845–24854; https://doi.org/10.1021/acsami.0c05695.Search in Google Scholar PubMed

Yang, M.; Li, C.; Luo, L.; Li, R.; Long, Y. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int. Commun. Heat Mass Tran. 2021, 125, 105317; https://doi.org/10.1016/j.icheatmasstransfer.2021.105317.Search in Google Scholar

Yin, Q.; Li, C.; Dong, L.; Bai, X.; Zhang, Y.; Yang, M.; Jia, D.; Li, R.; Liu, Z. Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int. J. Precis. Eng. Manuf.-Green Tech. 2021; https://doi.org/10.1007/s40684-021-00318-7.Search in Google Scholar

Yu, C.; Chen, M.; Cheng, K.; Zhao, X.; Ma, C.; Kuang, F.; Chen, H. SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng. Comput. 2021, 1–28. https://doi.org/10.1007/s00366-020-01234-1.Search in Google Scholar

Yu, H.; Li, W.; Chen, C.; Liang, J.; Gui, W.; Wang, M.; Chen, H. Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng. Comput. 2020, 1–29. https://doi.org/10.1007/s00366-020-01174-w.Search in Google Scholar

Zhang, X.; Zhang, Y. Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field. Int. J. Therm. Sci. 2021a, 164, 106897; https://doi.org/10.1016/j.ijthermalsci.2021.106897.Search in Google Scholar

Zhang, X.; Zhang, Y. Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation. Int. J. Therm. Sci. 2021b, 163, 106826; https://doi.org/10.1016/j.ijthermalsci.2020.106826.Search in Google Scholar

Zhang, Y.; Li, C.; Jia, D.; Zhang, D.; Zhang, X. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tool Manufact. 2015a, 99, 19–33; https://doi.org/10.1016/j.ijmachtools.2015.09.003.Search in Google Scholar

Zhang, Y.; Li, C.; Jia, D.; Zhang, D.; Zhang, X. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J. Clean. Prod. 2015b, 87, 930–940; https://doi.org/10.1016/j.jclepro.2014.10.027.Search in Google Scholar

Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S. A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588; https://doi.org/10.1002/aenm.201502588.Search in Google Scholar

Zhang, Y.; Li, C.; Ji, H.; Yang, X.; Yang, M.; Jia, D.; Zhang, X.; Li, R.; Wang, J. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int. J. Mach. Tool Manufact. 2017, 122, 81–97; https://doi.org/10.1016/j.ijmachtools.2017.06.002.Search in Google Scholar

Zhang, Y.; Liu, R.; Heidari, A. A.; Wang, X.; Wang, Y.; Wang, M.; Chen, H. Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing 2021a, 430, 185–212.10.1016/j.neucom.2020.10.038Search in Google Scholar

Zhang, H.; Sun, M.; Song, L.; Guo, J.; Zhang, L. Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: combined effect on thermodynamic properties of sludge. Biochem. Eng. J. 2019b, 147, 146–152; https://doi.org/10.1016/j.bej.2019.04.016.Search in Google Scholar

Zhang, G. D.; Harada, A.; Nishiyama, N.; Jiang, D. L.; Koyama, H.; Aida, T.; Kataoka, K. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J. Contr. Release 2003, 93, 141–150; doi: https://doi.org/10.1016/j.jconrel.2003.05.002.Search in Google Scholar PubMed

Zhang, K.; Huo, Q.; Zhou, Y.-Y.; Wang, H.-H.; Li, G.-P.; Wang, Y.-W.; Wang, Y.-Y. Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl. Mater. Interfaces 2019c, 11, 17368–17374; https://doi.org/10.1021/acsami.9b01734.Search in Google Scholar PubMed

Zhang, X.; Fan, M.; Wang, D.; Zhou, P.; Tao, D. Top-k feature selection framework using robust 0-1 integer programming. IEEE Trans. Neural Networks Learn. Syst., 2020a, 32, 3005–3019; https://doi.org/10.1109/TNNLS.2020.3009209.Search in Google Scholar PubMed

Zhang, X.; Wang, T.; Wang, J.; Tang, G.; Zhao, L. Pyramid Channel-Based Feature Attention Network for Image Dehazing, 2020b; pp 103003; https://doi.org/10.1016/j.cviu.2020.103003.Search in Google Scholar

Zhang, X.; Jiang, R.; Wang, T.; Wang, J. Recursive neural network for video deblurring. IEEE Trans. Circ. Syst. Video Technol., 2020c; https://doi.org/10.1109/TCSVT.2020.3035722.Search in Google Scholar

Zhang, X.; Wang, T.; Luo, W.; Huang, P. Multi-level fusion and attention-guided CNN for image dehazing. IEEE Trans. Circ. Syst. Video Technol., 2020d; https://doi.org/10.1109/TCSVT.2020.3046625.Search in Google Scholar

Zhang, X.; Wang, J.; Wang, T.; Jiang, R.; Xu, J.; Zhao, L. Robust feature learning for adversarial defense via hierarchical feature alignment. Inf. Sci., 2020e, 560, 256–270; https://doi.org/10.1016/j.ins.2020.12.042.Search in Google Scholar

Zhang, Y.; Liu, R.; Wang, X.; Chen, H.; Li, C. Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 2020f; https://doi.org/10.1007/s00366-020-01028-5.Search in Google Scholar

Zhang, K.; Yang, Z.; Xue, M.; Chen, X.-L.; Li, H.-H.; Wang, Y.-Y. Multifunctional textiles/metal–organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl. Mater. Interfaces 2020g, 12, 55316–55323; https://doi.org/10.1021/acsami.0c18147.Search in Google Scholar PubMed

Zhang, X.; Wang, D.; Zhou, Z.; Ma, Y. Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2021b, 43, 238–255; doi: https://doi.org/10.1109/TPAMI.2019.2929043.Search in Google Scholar PubMed

Zhang, J.; Wu, W.; Li, C.; et al.. Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti–6Al–4V. Int. J. Precis. Eng. Manuf.Green Tech. 2020h; https://doi.org/10.1007/s40684-020-00268-6.Search in Google Scholar

Zhang, L.; Zheng, J.; Tian, S.; Zhang, H.; Guan, X.; Zhu, S.; Zhang, X.; Bai, Y.; Xu, P.; Zhang, J.; Zheng, L. Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge. J. Environ. Sci. 2020i, 91, 212–221; https://doi.org/10.1016/j.jes.2020.02.010.Search in Google Scholar PubMed

Zhang, M.; Zhang, L.; Tian, S.; Zhang, X.; Guo, J.; Guan, X.; Xu, P. Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge. Chemosphere 2020j, 253, 126638; https://doi.org/10.1016/j.chemosphere.2020.126638.Search in Google Scholar PubMed

Zhang, L.; Zhang, M.; You, S.; Ma, D.; Zhao, J.; Chen, Z. Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process. Sci. Total Environ. 2021c, 780, 146505; https://doi.org/10.1016/j.scitotenv.2021.146505.Search in Google Scholar PubMed

Zhao, D.; Liu, L.; Yu, F.; Heidari, A. A.; Wang, M.; Liang, G.; Muhammad, K.; Chen, H. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl. Base Syst. 2021, 216, 106510.10.1016/j.knosys.2020.106510Search in Google Scholar

Zhao, M.; Sun, L.; Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 1998, 120, 4877–4878; https://doi.org/10.1021/ja980438n.Search in Google Scholar

Zhao, N.; Deng, l.; Luo, D.; Zhang, P. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 2020, 526, 146696; doi: https://doi.org/10.1016/j.apsusc.2020.146696.Search in Google Scholar

Zhao, X.; Li, D.; Yang, B.; Ma, C.; Zhu, Y.; Chen, H. Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl. Soft Comput. 2014, 24, 585–596; https://doi.org/10.1016/j.asoc.2014.07.024.Search in Google Scholar

Zhao, X.; Zhang, X.; Cai, Z.; Tian, X.; Wang, X.; Huang, Y.; Chen, H.; Hu, L. Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 2019, 78, 481–490; https://doi.org/10.1016/j.compbiolchem.2018.11.017.Search in Google Scholar PubMed

Zuo, C.; Chen, Q.; Tian, L.; Waller, L.; Anand, A. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Laser. Eng. 2015, 71, 20–32; https://doi.org/10.1016/j.optlaseng.2015.03.006.Search in Google Scholar

Received: 2021-04-06
Accepted: 2021-06-24
Published Online: 2021-07-29
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2021-0007/html
Scroll to top button