Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 14, 2023

Blue light-emitting diode of Er3+-doped borate glass for optoelectronics devices

  • Mohammed A. Farag , Khalid Abd-Allah , Gamal M. Turky , Mohamed M. El-Okr , Walid A. Abu-raia and Aly Saeed EMAIL logo

Abstract

A blue emitter of Er3+ ions doped a host glass of a chemical composition 30B2O3–30Bi2O3–20Li2O–10BaO–10PbO was fabricated to be used in optoelectronics devices. Four proposed concentrations of Er2O3, which are 0.5, 1, 2, and 4 mol%, were suggested to study the impact of Er3+ ions on the structural, thermal, and photoluminescence properties of the considered host glass, respectively. The phase checking of the produced glasses using X-ray diffraction patterns showed the amorphicity phase formation. Impact of Er3+ ions on the structural properties of the considered host glass network was extensively studied through the occurred variations in XRD patterns, density and density-based parameters, and FTIR spectra. Thermally, the considered glasses have high thermal stability and high glass formability. Optically, the optical band gap, which ranged between 2.18 and 2.56 eV, signifies that the considered glasses have a semiconducting nature. Under 540 nm excitation wavelength, three bands were emitted in the blue region at 450, 462, and 486 nm and two in the violet region at 412 and 427 nm. Chromaticity analysis through CIE 1931 chromaticity diagram showed a strong blue light emission from the produced glasses. The blue light color purity of the considered glasses ranged between 90.887 and 92.324 %. Hence, the considered glasses have suitable characteristics that make them a good choice as blue light-emitting diodes in the optoelectronics devices.


Corresponding author: Aly Saeed, Mathematical and Natural Science Department, Faculty of Engineering, Egyptian Russian University, Cairo, Egypt, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Ravi, G. P. Chakrapani, M. Balachandrika, et al.., “Photoluminescence studies on LiNa5(PO4)2:Dy3+, Sm3+ phosphor,” J. Phys. Sci., vol. 77, no. 3, pp. 279–290, 2022, https://doi.org/10.1515/zna-2021-0153.Search in Google Scholar

[2] A. Nexha, M. Cinta Pujol, J. J. Carvajal, F. Díaz, and M. Aguilo, “Luminescence nanothermometry via white light emission in Ho3+, Tm3+:Y2O3 colloidal nanocrystals,” J. Lumin., vol. 247, p. 118854, 2022, https://doi.org/10.1016/j.jlumin.2022.118854.Search in Google Scholar

[3] I. Abdul Rasheed, V. Ramar, I. M. Chhabra, M. K. Gupta, and B. Karthikeyan, “Optical and strong blue emission properties of alumina abrasive grains mediated grinding induced SiO2 glass surfaces for navigation grade sensors,” Opt. Mater., vol. 117, p. 111181, 2021, https://doi.org/10.1016/j.optmat.2021.111181.Search in Google Scholar

[4] Y. Zhang, B. Chen, X. Zhang, et al.., “Tunable and high-color-rendering white light emissions in full visible spectral range in Ag-aggregates/Sm3+ co-doped germanate glass fluorophors,” Ceram. Int., vol. 48, pp. 22994–23001, 2022, https://doi.org/10.1016/j.ceramint.2022.04.272.Search in Google Scholar

[5] A. P. Ravita, P. Rohilla, A. Shandily, and A. S. Rao, “Photoluminescence and energy transfer studies on Tm3+/Dy3+/Eu3+ doped borosilicate glasses for color tunability and warm white light generation,” J. Non-Cryst. Solids, vol. 606, p. 122192, 2023, https://doi.org/10.1016/j.jnoncrysol.2023.122192.Search in Google Scholar

[6] W. Rittisut, N. Wantana, Y. Ruangtaweep, et al.., “Bright white light emission from (Gd3+/Dy3+) dual doped transparent lithium aluminum borate glasses for W- LED application,” Opt. Mater., vol. 122, p. 111705, 2021, https://doi.org/10.1016/j.optmat.2021.111705.Search in Google Scholar

[7] M. Manikandan, D. Nirmal, J. Ajayan, P. Mohankumar, P. Prajoon, and L. Arivazhagan, “A review of blue light emitting diodes for future solid state lighting and visible light communication applications,” Superlattices Microstruct., vol. 136, p. 106294, 2019, https://doi.org/10.1016/j.spmi.2019.106294.Search in Google Scholar

[8] C. Sun, K. Jiang, M.-F. Han, et al.., “A zero-dimensional hybrid lead perovskite with highly efficient blue-violet light emission,” J. Mater. Chem. C, vol. 8, pp. 11890–11895, 2020, https://doi.org/10.1039/d0tc02351e.Search in Google Scholar

[9] Y. Wang, S. Bai, H. Liang, et al.., “Lanthanide ions doped rare earth-based double perovskite single crystals for light-emitting diodes,” J. Alloys Compd., vol. 934, p. 167952, 2023, https://doi.org/10.1016/j.jallcom.2022.167952.Search in Google Scholar

[10] J. Pisarska, M. Kuwik, A. Baranowska, et al.., “White light emission and energy transfer in Pr3+/Er3+ co-doped InF3-based glass,” Mater. Res. Bull., vol. 150, p. 111791, 2022, https://doi.org/10.1016/j.materresbull.2022.111791.Search in Google Scholar

[11] S. Aly, S. Sobaih, W. A. Abu-raia, A. Abdelghany, and S. Heikal, “Novel Er3+ doped heavy metals-oxyfluorophosphate glass as a blue emitter,” Opt. Quant. Electron., vol. 53, p. 482, 2021, https://doi.org/10.1007/s11082-021-03171-9.Search in Google Scholar

[12] I. V. Kityk, N. S. Al Zayed, A. M. El-Naggar, et al.., “Er–Pr doped tellurite glass nanocomposites for white light emitting diodes,” Opt. Commun., vol. 285, pp. 655–658, 2012, https://doi.org/10.1016/j.optcom.2011.10.088.Search in Google Scholar

[13] J. Cao, Y. Wu, C. Song, et al.., “Structure and fluorescence characteristics in highly Dy3+ doped tellurite-fluoride glass for white light fiber lasers,” Ceram. Int., vol. 49, no. 11, pp. 16536–16544, 2023. https://doi.org/10.1016/j.ceramint.2023.02.011.Search in Google Scholar

[14] M. Djamala, L. Yuliantini, R. Hidayat, K. Boonin, P. Yasaka, and J. Kaewkhao, “Development of optical material based on glass doped rare earth for photonic devices,” Mater. Today: Proc., vol. 43, pp. 2531–2537, 2021, https://doi.org/10.1016/j.matpr.2020.04.613.Search in Google Scholar

[15] T. N. L. Tran, A. Szczurek, S. Varas, et al.., “Rare-earth activated SnO2 photoluminescent thin films on flexible glass: synthesis, deposition and characterization,” Opt. Mater., vol. 124, p. 111978, 2022, https://doi.org/10.1016/j.optmat.2022.111978.Search in Google Scholar

[16] A. M. El-Batal, S. Aly, N. Hendawy, M. M. El-Okr, and M. K. El-Mansy, “Influence of Mo or/and Co ions on the structural and optical properties of phosphate zinc lithium glasses,” J. Non-Cryst. Solids, vol. 559, p. 120678, 2021, https://doi.org/10.1016/j.jnoncrysol.2021.120678.Search in Google Scholar

[17] A. M. El-Batal, M. A. Farag, M. M. El-Okr, and A. Saeed, “Influence of the addition of two transition metal ions to sodium zinc borophosphate glasses for optical applications,” Egypt. J. Chem., vol. 64, no. 12, pp. 6953–6958, 2021.Search in Google Scholar

[18] W. A. Abu-raia, D. A. Aloraini, S. A. El-Khateeb, and A. Saeed, “Ni ions doped oxyflourophosphate glass as a triple ultraviolet–visible–near infrared broad bandpass optical filter,” Sci. Rep., vol. 12, p. 16024, 2022, https://doi.org/10.1038/s41598-022-20300-w.Search in Google Scholar PubMed PubMed Central

[19] A. Pranav Kumara, S. Hima Bindu, P. Venkateswara Rao, et al.., “Enhancement of rare earth ions hosting potential of B2O3 added germanium based glasses: a detailed optical analysis,” J. Alloys Compd., vol. 883, p. 160800, 2021, https://doi.org/10.1016/j.jallcom.2021.160800.Search in Google Scholar

[20] A. Saeed, Y. H. Elbashar, and S. U. El Khameesy, “A novel barium borate glasses for optical applications,” Silicon, vol. 10, pp. 569–574, 2018, https://doi.org/10.1007/s12633-016-9492-y.Search in Google Scholar

[21] M. Abo Zeed, A. Saeed, R. M. El Shazly, H. M. El-Mallah, and E. Elesh, “Double effect of glass former B2O3 and intermediate Pb3O4 augmentation on the structural, thermal, and optical properties of borate network,” Optik, vol. 272, p. 170368, 2023, https://doi.org/10.1016/j.ijleo.2022.170368.Search in Google Scholar

[22] A. Saeed, Y. H. Elbashar, and S. U. El Kameesy, “Optical spectroscopic analysis of high density lead borosilicate glasses,” Silicon, vol. 10, pp. 185–189, 2018, https://doi.org/10.1007/s12633-015-9391-7.Search in Google Scholar

[23] L. Vijayalakshmi, K. Naveen Kumar, K. Srinivasa Rao, and P. Hwang, “Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications,” J. Mol. Struct., vol. 1155, pp. 394–402, 2018, https://doi.org/10.1016/j.molstruc.2017.11.025.Search in Google Scholar

[24] T. Wu, J. Hu, K. Han, et al.., “Study on the luminescence characteristics of Tb3+-doped TeO2-Bi2O3-BaF2 glass for blue-green laser emission,” Ceram. Int., vol. 49, pp. 11718–11724, 2023, https://doi.org/10.1016/j.ceramint.2023.01.006.Search in Google Scholar

[25] S. A. A. Wahab, K. A. Matori, M. H. M. Zaid, M. M. A. Kechik, N. Effendy, and R. E. M. Khaidir, “Blue emission: optical properties of Co2+ doping towards Zn2SiO4 glass-ceramics,” Optik, vol. 274, p. 170528, 2023, https://doi.org/10.1016/j.ijleo.2023.170528.Search in Google Scholar

[26] Y. H. Elbashar and A. Saeed, “Computational spectroscopic analysis by using clausius–mossotti method for sodium borate glass doped neodymium oxide,” Res. J. Pharmaceut. Biol. Chem. Sci., vol. 6, no. 5, pp. 320–326, 2015.Search in Google Scholar

[27] A. Saeed, Y. H. Elbashar, and R. M. El shazly, “Optical properties of high density barium borate glass for gamma ray shielding applications,” Opt. Quant. Electron., vol. 48, p. 1, 2016, https://doi.org/10.1007/s11082-015-0274-3.Search in Google Scholar

[28] S. Aqdim, M. Naji, A. Chakir, and A. El Bouari, “Design, synthesis and structural properties of borate glasses: towards an alkali-free bioactive glass,” J. Non-Cryst. Solids, vol. 597, p. 121876, 2022, https://doi.org/10.1016/j.jnoncrysol.2022.121876.Search in Google Scholar

[29] A. Ibrahim, M. A. Farag, and M. S. Sadeq, “Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes,” Ceram. Int., vol. 48, pp. 12079–12090, 2022, https://doi.org/10.1016/j.ceramint.2022.01.068.Search in Google Scholar

[30] A. Shreif, M. A. Farag, M. A. El-Sherbiny, and M. Y. Hassaan, “Effect of Zr ions on the structure and optical properties of lithium borosilicate molybdate glass system,” Ceram. Int., vol. 49, pp. 8709–8717, 2023, https://doi.org/10.1016/j.ceramint.2022.10.020.Search in Google Scholar

[31] R. A. Elsad, A. M. Abdel-Aziz, E. M. Ahmed, et al.., “Ultrasonic and dielectric characteristics of neodymium (III)/erbium (III) lead-borate glasses: experimental studies,” J. Mater. Res. Technol., vol. 13, pp. 1363–1373, 2021, https://doi.org/10.1016/j.jmrt.2021.05.029.Search in Google Scholar

[32] J. Hema Madhuri, N. Chanakya, D. Satyavardhan, Ch. Ramesh, and G. Upender, “XPS, FTIR, DSC and optical absorption investigations on 55B2O3–20ZnO–(25-x)Li2O–xBi2O3 (0 ≤ x ≤ 25 mol%) glass system,” J. Non-Cryst. Solids, vol. 600, p. 122019, 2023, https://doi.org/10.1016/j.jnoncrysol.2022.122019.Search in Google Scholar

[33] M. A. Ouis and F. H. ElBatal, “Shielding behavior of MoO3-doped lead borate glasses towards gamma irradiation assessed through collective optical, FTIR, and ESR spectral analysis,” Radiat. Phys. Chem., vol. 186, p. 109537, 2021, https://doi.org/10.1016/j.radphyschem.2021.109537.Search in Google Scholar

[34] P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Pop, and E. Culea, “Influence of europium ions on structure and crystallization properties of bismuth-alumino-borate glasses and glass ceramics,” J. Mol. Struct., vols 924–926, pp. 214–220, 2009, https://doi.org/10.1016/j.molstruc.2009.01.003.Search in Google Scholar

[35] I. Kashif, H. Farouk, A. Ratep, and M. Al Mahalawy, “White light emission in Dy3+ doped SiO2B2O3Bi2O3TeO2 glass system,” J. Non-Cryst. Solids, vol. 522, p. 119581, 2019, https://doi.org/10.1016/j.jnoncrysol.2019.119581.Search in Google Scholar

[36] N. Wantana, E. Kaewnuam, N. Chanlek, H. J. Kim, and J. Kaewkhao, “Influence of Gd3+ on structural and luminescence properties of new Eu3+-doped borate glass for photonics material,” Radiat. Phys. Chem., vol. 207, p. 110812, 2023, https://doi.org/10.1016/j.radphyschem.2023.110812.Search in Google Scholar

[37] M. M. Hivrekar, D. B. Sable, M. B. Solunke, and K. M. Jadhav, “Network structure analysis of modifier CdO doped sodium borate glass using FTIR and Raman spectroscopy,” J. Non-Cryst. Solids, vol. 474, pp. 58–65, 2017, https://doi.org/10.1016/j.jnoncrysol.2017.08.028.Search in Google Scholar

[38] H. M. Gomaa, A. M. Moneep, A. A. Bendary, I. S. Yahia, and H. Y. Zahran, “Structural and optical absorption coefficient analysis of barium lead sodium-borate glass doped with graphene nanopowder,” Optik, vol. 271, p. 170090, 2022, https://doi.org/10.1016/j.ijleo.2022.170090.Search in Google Scholar

[39] N. A. Ghoneim, A. M. Abdelghany, S. M. Abo-Naf, F. A. Moustafa, and K. M. ElBadry, “Spectroscopic studies of lithium phosphate, lead phosphate and zinc phosphate glasses containing TiO2: effect of gamma irradiation,” J. Mol. Struct., vol. 1035, pp. 209–217, 2013, https://doi.org/10.1016/j.molstruc.2012.11.034.Search in Google Scholar

[40] J. Smejcký, V. Jěrabek, D. Marěs, et al.., “Erbium–bismuth-doped germanium silicate active optic glass for broad-band optical amplification,” Opt. Mater., vol. 137, p. 113621, 2023, https://doi.org/10.1016/j.optmat.2023.113621.Search in Google Scholar

[41] Q. Wang, Ge. Zhu, Y. Li, and Y. Wang, “Photoluminescent properties of Pr3+ activated Y2WO6 for light emitting diodes,” Opt. Mater., vol. 42, pp. 385–389, 2015, https://doi.org/10.1016/j.optmat.2015.01.032.Search in Google Scholar

Received: 2023-03-22
Accepted: 2023-05-23
Published Online: 2023-06-14
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0075/html
Scroll to top button