Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 2, 2023

BaTiO3/CeO2 heterojunction photocatalysts: design, construction and a novel application for the photocatalytic degradation of oxytetracycline hydrochloride

  • Chuan Yu , Shifa Wang EMAIL logo , Jing Zhang , Huajing Gao EMAIL logo , Xiangyu Chen , Hua Yang , Leiming Fang EMAIL logo , Xiping Chen , Zao Yi and Dengfeng Li

Abstract

A polyacrylamide gel method combined with low temperature calcination technology has been developed to synthesize the BaTiO3/CeO2 heterojunction photocatalysts, which were formed by hybriding the large BaTiO3 particles and fine CeO2 nanoparticles with varied mass percent of CeO2. Various characterization methods have been used to determine the phase structure, functional group information, elemental composition, microstructure, optical and photocatalytic activity of BaTiO3/CeO2 heterojunction photocatalysts. The introduction of CeO2 into the host lattice of BaTiO3 does not change the optical band gap value (Eg = 3.20 eV) of the host lattice. As expected, the BaTiO3/CeO2 heterojunction photocatalysts exhibit highly enhanced and CeO2 composition-dependent photocatalytic activity for the degradation of oxytetracycline hydrochloride under simulated sunlight irradiation. The BaTiO3/5 wt% CeO2, BaTiO3/10 wt% CeO2, and BaTiO3/15 wt% CeO2 showed lower photocatalytic activity, while BaTiO3/20 wt% CeO2 showed highest photocatalytic activity (96.89 %) over the single component BaTiO3 and CeO2 photocatalysts with the initial oxytetracycline hydrochloride concentration, photocatalyst content and irradiation time were 100 mg/L, 1.5 g/L and 120 min, respectively. The enhanced photocatalytic activity of BaTiO3/20 wt% CeO2 heterojunction photocatalysts is ascribed to the cooperation between Ce3+ and Ce4+, improved charge transfer and separation of electron-hole pairs generated on irradiation with simulated sunlight and proper amount of surface defects or oxygen vacancies on the BaTiO3/CeO2 heterojunction photocatalysts.


Corresponding authors: Shifa Wang, School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China; and Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China, E-mail: ; Huajing Gao, School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China; Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China; and State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China, E-mail: ; and Leiming Fang, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Sichuan, Mianyang, 621900, China, E-mail:

  1. Research funding: This work was supported by the Science and Technology Research Program of Chongqing Education Commission of China (KJZD-K202001202, KJQN202201204), the NSAF joint Foundation of China (U2030116), the Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area (No. ZD2020A0401), the Talent Introduction Project (09924601) of Chongqing Three Gorges University and the Scientific Research Fund of Sichuan Provincial Science and Technology Department (2020YJ0137, 2020YFG0467).

  2. Conflict of interest statement: The authors declare that they have no conflict interests.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Xu, X., Xu, Y., Xu, N., Pan, B., Ni, J. Chemosphere 2022, 301, 134721; https://doi.org/10.1016/j.chemosphere.2022.134721.Search in Google Scholar PubMed

2. Chen, X., Wang, S., Gao, H., Yang, H., Fang, L., Chen, X., Tang, S., Yu, C., Li, D. J. Sol. Gel Sci. Technol. 2022, 1–16; https://doi.org/10.1007/s10971-022-05937-3.Search in Google Scholar

3. Asiya, S. I., Pal, K., Kralj, S., El-Sayyad, G. S., de Souza, F. G., Narayanan, T. Mater. Today Chem. 2020, 17, 100327; https://doi.org/10.1016/j.mtchem.2020.100327.Search in Google Scholar

4. Dong, H., Chen, Y., Wang, J., Zhang, Y., Zhang, P., Li, X., Zhou, A. J. Hazard. Mater. 2021, 403, 123961; https://doi.org/10.1016/j.jhazmat.2020.123961.Search in Google Scholar PubMed

5. Iqbal, M. Chemosphere 2016, 144, 785–802; https://doi.org/10.1016/j.chemosphere.2015.09.048.Search in Google Scholar PubMed

6. Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Tahir, M. A., Iqbal, M. Sci. Total Environ. 2018, 626, 1295–1309; https://doi.org/10.1016/j.scitotenv.2018.01.066.Search in Google Scholar PubMed

7. Iqbal, M., Abbas, M., Nisar, J., Nazir, A., Qamar, A. Chem. Int. 2019, 5, 1–80; https://doi.org/10.3171/2019.6.PEDS19286.Search in Google Scholar PubMed

8. Li, L., Gao, H., Yi, Z., Wang, S., Wu, X., Li, R., Yang, H. Colloid. Surface. A 2022, 644, 128758; https://doi.org/10.1016/j.colsurfa.2022.128758.Search in Google Scholar

9. Freitas, T. S., Marques, T. M. F., Barros, L. N. L. C., da Silva, J. H., Cruz, R. P., Pereira, R. L. S., Freire, P. T. C., Santos, A., Ghosh, A., Agressott, E., Viana, B., Coutinho, H. Mater. Today Chem. 2021, 21, 100539; https://doi.org/10.1016/j.mtchem.2021.100539.Search in Google Scholar

10. Li, L. X., Sun, X. F., Xian, T., Gao, H. J., Wang, S. F., Yi, Z., Wu, X. W., Yang, H. Phys. Chem. Chem. Phys. 2022, 24, 8279–8295; https://doi.org/10.1039/d1cp05952a.Search in Google Scholar PubMed

11. Liu, H., Huo, W., Zhang, T. C., Ouyang, L., Yuan, S. Mater. Today Chem. 2022, 23, 100729; https://doi.org/10.1016/j.mtchem.2021.100729.Search in Google Scholar

12. Cheng, T., Ma, Q., Gao, H., Meng, S., Lu, Z., Wang, S., Yi, Z., Wu, X., Liu, G., Wang, X., Yang, H. Mater. Today Chem. 2022, 23, 100750; https://doi.org/10.1016/j.mtchem.2021.100750.Search in Google Scholar

13. Cheng, T., Gao, H., Wang, S., Yi, Z., Liu, G., Pu, Z., Wang, X., Yang, H. Mater. Res. Bull. 2022, 149, 111711; https://doi.org/10.1016/j.materresbull.2021.111711.Search in Google Scholar

14. Iqbal, M., Ahmad, M. Z., Qureshi, K., Bhatti, I. A., Alwadai, N., Kusuma, H. S. Mater. Chem. Phys. 2021, 272, 124968; https://doi.org/10.1016/j.matchemphys.2021.124968.Search in Google Scholar

15. Muneer, M., Kanjal, M. I., Saeed, M., Jamal, M. A., ul Haq, A., Iqbal, M., ul Haq, E., Ali, S. Z. Phys. Chem. 2021, 235, 1629–1643; https://doi.org/10.1515/zpch-2019-1559.Search in Google Scholar

16. Qureshi, K., Ahmad, M. Z., Bhatti, I. A., Zahid, M., Nisar, J., Iqbal, M. J. Mol. Liq. 2019, 285, 778–789; https://doi.org/10.1016/j.molliq.2019.04.139.Search in Google Scholar

17. Nisar, J., Sayed, M., Khan, F. U., Khan, H. M., Iqbal, M., Khan, R. A., Anas, M. J. Environ. Chem. Eng. 2016, 4, 2573–2584; https://doi.org/10.1016/j.jece.2016.04.034.Search in Google Scholar

18. Murali, A., Lan, Y. P., Sarswat, P. K., Free, M. L. Mater. Today Chem. 2019, 12, 222–232; https://doi.org/10.1016/j.mtchem.2019.02.001.Search in Google Scholar

19. Wang, S., Tang, S., Gao, H., Chen, X., Liu, H., Yu, C., Yang, H., Zhao, X., Pan, X. Opt. Mater. 2021, 118, 111273; https://doi.org/10.1016/j.optmat.2021.111273.Search in Google Scholar

20. Liu, Q., Zhai, D., Xiao, Z., Tang, C., Sun, Q., Bowen, C. R., Zhang, D. Nano Energy 2022, 92, 106702; https://doi.org/10.1016/j.nanoen.2021.106702.Search in Google Scholar

21. Zhang, S., Wang, J., Wen, S., Jiang, M., Xiao, H., Ding, X., Wang, N., Li, M., Zu, X., Li, S., Yam, C., Huang, B., Qiao, L. Phys. Rev. Lett. 2021, 126, 176401; https://doi.org/10.1103/physrevlett.126.176401.Search in Google Scholar

22. He, Z., Xia, Y., Su, J., Tang, B. Opt. Mater. 2019, 88, 195–203; https://doi.org/10.1016/j.optmat.2018.11.025.Search in Google Scholar

23. Ray, S. K., Cho, J., Hur, J. J. Environ. Manage. 2021, 290, 112679; https://doi.org/10.1016/j.jenvman.2021.112679.Search in Google Scholar PubMed

24. He, Z., Xia, Y., Su, J., Chen, R., Tang, B. J. Mater. Sci. Mater. Electron. 2019, 30, 20870–20880; https://doi.org/10.1007/s10854-019-02454-y.Search in Google Scholar

25. Li, W., Jin, L., Gao, F., Wan, H., Pu, Y., Wei, X., Dong, L., Zou, W., Zhu, C. Appl. Catal. B Environ. 2021, 294, 120257; https://doi.org/10.1016/j.apcatb.2021.120257.Search in Google Scholar

26. Gao, H., Wang, S., Wang, Y., Yang, H., Fang, L., Chen, X., Yi, Z., Li, D. J. Electron. Mater. 2022, 51, 5230–5245; https://doi.org/10.1007/s11664-022-09769-3.Search in Google Scholar

27. Ouyang, K., Yang, C., Xu, B., Wang, H., Xie, S. Colloid. Surface. A 2021, 625, 126978; https://doi.org/10.1016/j.colsurfa.2021.126978.Search in Google Scholar

28. Wang, H., Liao, B., Lu, T., Ai, Y., Liu, G. J. Hazard. Mater. 2020, 385, 121552; https://doi.org/10.1016/j.jhazmat.2019.121552.Search in Google Scholar PubMed

29. Zhang, J., Qiu, S., Feng, H., Hu, T., Wu, Y., Luo, T., Wang, D. Chem. Eng. J. 2022, 428, 131403; https://doi.org/10.1016/j.cej.2021.131403.Search in Google Scholar

30. Gao, H., Wang, S., Wang, Y., Yang, H., Wang, F., Tang, S., Li, D. Colloid. Surface. A 2022, 642, 128642; https://doi.org/10.1016/j.colsurfa.2022.128642.Search in Google Scholar

31. Gao, H., Yu, C., Wang, Y., Wang, S., Yang, H., Wang, F., Li, D., Yi, Z. J. Lumin. 2022, 243, 118660; https://doi.org/10.1016/j.jlumin.2021.118660.Search in Google Scholar

32. Wang, S., Li, M., Gao, H., Yin, Z., Chen, C., Yang, H., Fang, L., Angadi, V. J., Yi, Z., Li, D. Appl. Surf. Sci. 2023, 608, 154977.10.1016/j.apsusc.2022.154977Search in Google Scholar

33. Wang, S., Li, M., Yin, Z., Gao, H., Liu, H., Yang, H., Fang, L., Angadi, V. J., Hu, L., Li, D. Adv. Powder Technol. 2022, 33, 103771; https://doi.org/10.1016/j.apt.2022.103771.Search in Google Scholar

34. Wang, S., Chen, X., Fang, L., Gao, H., Han, M., Chen, X., Xia, Y., Xie, L., Yang, H. Nucl. Anal. 2022, 1, 100026; https://doi.org/10.1016/j.nucana.2022.100026.Search in Google Scholar

35. Wang, S., Tang, S., Gao, H., Fang, L., Hu, Q., Sun, G., Pan, X., Yu, C., Liu, H. J. Mater. Sci. Mater. Electron. 2021, 32, 10820–10834; https://doi.org/10.1007/s10854-021-05740-w.Search in Google Scholar

36. Liu, H., Wang, S., Gao, H., Yang, H., Wang, F., Chen, X., Tang, S. N., Li, D. F., Yi, Z. Sep. Purif. Technol. 2022, 281, 119855; https://doi.org/10.1016/j.seppur.2021.119855.Search in Google Scholar

37. Li, J., Wang, S., Sun, G., Gao, H., Yu, X., Tang, S., Zhao, X., Wei, Y., Wang, Y. Mater. Today Chem. 2021, 19, 100390; https://doi.org/10.1016/j.mtchem.2020.100390.Search in Google Scholar

38. Gao, H. J., Wang, S. F., Fang, L. M., Sun, G. A., Chen, X. P., Tang, S. N., Yang, H., Li, D. F. Mater. Today Chem. 2021, 22, 100593; https://doi.org/10.1016/j.mtchem.2021.100593.Search in Google Scholar

39. Imam, N. G., Hasswa, M. A., Okasha, N. J. Mater. Sci. Mater. Electron. 2021, 32, 21492–21510; https://doi.org/10.1007/s10854-021-06658-z.Search in Google Scholar

40. Goyal, R. K., Tamhane, P., Tambat, S. J. Mater. Sci. Mater. Electron. 2021, 32, 28468–28479; https://doi.org/10.1007/s10854-021-07228-z.Search in Google Scholar

41. Soliman, T. S., Zaki, M. F., Hessien, M. M., Elkalashy, S. I. Opt. Mater. 2021, 111, 110648; https://doi.org/10.1016/j.optmat.2020.110648.Search in Google Scholar

42. Darwish, A. G. A., Badr, Y., Shaarawy, M. E., Shash, N. M. H., Battisha, I. K. J. Alloy. Compd. 2010, 489, 451–455; https://doi.org/10.1016/j.jallcom.2009.09.021.Search in Google Scholar

43. Han, M., Wang, S., Chen, X., Liu, H., Gao, H., Zhao, X., Yang, H., Yi, Z., Fang, L. ACS Appl. Nano Mater. 2022, 5, 11194–11207; https://doi.org/10.1021/acsanm.2c02349.Search in Google Scholar

44. Shi, Q., Yue, Y., Qu, Y., Liu, S., Kang, J., Zhang, L., Zhao, J. J. Non-Cryst. Solids 2019, 516, 50–55; https://doi.org/10.1016/j.jnoncrysol.2019.04.029.Search in Google Scholar

45. Khan, M. A. M., Khan, W., Naziruddin, K. M., Alhazaa, A. N. J. Mater. Sci. Mater. Electron. 2019, 30, 8291–8300; https://doi.org/10.1007/s10854-019-01147-w.Search in Google Scholar

46. Pinheiro, D., Sunaja, D. K. R., Karthik, K., Jose, A., Sugunan, S. Mater. Res. Exp. 2019, 6, 084011; https://doi.org/10.1088/2053-1591/ab26e3.Search in Google Scholar

47. Binet, C., Daturi, M., Lavalley, J. C. Catal. Today 1999, 50, 207–225; https://doi.org/10.1016/s0920-5861(98)00504-5.Search in Google Scholar

48. Bozon, V. F., Bensalem, A. J. Chem. Soc. Faraday Trans. 1994, 90, 653–657; https://doi.org/10.1039/FT9949000653.Search in Google Scholar

49. Wang, S. F., Zhang, C., Sun, G., Chen, B., Xiang, X., Wang, H., Zu, X., Tian, Q., Ding, Q. Opt. Mater. 2013, 36, 482–488; https://doi.org/10.1016/j.optmat.2013.10.014.Search in Google Scholar

50. Xiao, M., Zhang, X., Yang, Y., Cui, X., Chen, T., Wang, Y. Fuel 2022, 323, 124379; https://doi.org/10.1016/j.fuel.2022.124379.Search in Google Scholar

51. Dong, J., Li, D., Zhang, Y., Chang, P., Jin, Q. J. Catal. 2022, 407, 174–185; https://doi.org/10.1016/j.jcat.2022.01.026.Search in Google Scholar

52. Chaudhari, S. M., Gonsalves, O. S., Nemade, P. R. Mater. Res. Bull. 2021, 143, 111463; https://doi.org/10.1016/j.materresbull.2021.111463.Search in Google Scholar

53. Gao, Q., Sun, K., Cui, Y., Wang, S., Liu, C., Liu, B. Sep. Purif. Technol. 2022, 285, 120312; https://doi.org/10.1016/j.seppur.2021.120312.Search in Google Scholar

54. Zhen, J., Wang, X., Liu, D., Song, S., Wang, Z., Wang, Y., Li, J., Wang, F., Zhang, H. Chem. Eur. J. 2014, 20, 4469–4473; https://doi.org/10.1002/chem.201304109.Search in Google Scholar PubMed

55. Zhang, J., Cao, Y., Wang, C. A., Ran, R. ACS Appl. Mater. Inter. 2016, 8, 8670–8677; https://doi.org/10.1021/acsami.6b00002.Search in Google Scholar PubMed

56. Zhang, L., Zhang, L., Xu, G., Zhang, C., Li, X., Sun, Z., Jia, D. New J. Chem. 2017, 41, 13418–13424; https://doi.org/10.1039/c7nj02542d.Search in Google Scholar

57. Liu, G., Cui, Z., Han, M., Zhang, S., Zhao, C., Chen, C., Wang, G., Zhang, H. Chem. Eur. J. 2019, 25, 5904–5911; https://doi.org/10.1002/chem.201806377.Search in Google Scholar PubMed

58. Dai, Y., Liu, Y., Kong, J., Yuan, J., He, H., Xian, Q., Yang, S. Solid State Sci. 2019, 96, 105946; https://doi.org/10.1016/j.solidstatesciences.2019.105946.Search in Google Scholar

59. Wang, W., Niu, Q., Zeng, G., Zhang, C., Huang, D., Zhou, C., Yang, Y., Liu, Y., Guo, H., Xiong, W., Lei, L., Liu, S., Yi, H., Chen, S., Tang, X. Appl. Catal. B Environ. 2020, 273, 119051; https://doi.org/10.1016/j.apcatb.2020.119051.Search in Google Scholar

60. Guan, D. L., Niu, C. G., Wen, X. J., Guo, H., Deng, C. H., Zeng, G. M. J. Colloid Interf. Sci. 2018, 512, 272–281; https://doi.org/10.1016/j.jcis.2017.10.068.Search in Google Scholar PubMed

61. Jácome-Acatitla, G., Tzompantzi, F., López-González, R., García-Mendoza, C., Alvaro, J. M., Gómez, R. J. Photoch. Photobio. A 2014, 277, 82–89; https://doi.org/10.1016/j.jphotochem.2013.12.014.Search in Google Scholar

62. Zhao, W., Dong, Q., Sun, C., Xia, D., Huang, H., Wang, G., Leung, D. Y. Chem. Eng. J. 2021, 409, 128185; https://doi.org/10.1016/j.cej.2020.128185.Search in Google Scholar

63. Yu, L., Tang, Y., Liu, X., Ma, C., Huo, P., Pan, J., Shi, W., Yan, Y. Desalin. Water Treat. 2015, 55, 2144–2154; https://doi.org/10.1080/19443994.2014.932708.Search in Google Scholar

64. Sun, Y., Feng, X., Fu, S. Water Sci. Technol. 2020, 81, 1308–1318; https://doi.org/10.2166/wst.2020.229.Search in Google Scholar PubMed

65. Li, Z., Yu, X., Fu, J., Zhang, Y., Xue, B., Liu, J. Water Environ. J. 2021, 35, 1293–1301; https://doi.org/10.1111/wej.12719.Search in Google Scholar

66. Zhu, W., Yu, X., Liao, J., Fu, J., Zhang, Y., Li, Z. Environ. Eng. Sci. 2022, 39, 146–154; https://doi.org/10.1089/ees.2020.0480.Search in Google Scholar

67. Majumdar, A., Ghosh, U., Pal, A. J. Colloid Interf. Sci. 2021, 584, 320–331; https://doi.org/10.1016/j.jcis.2020.09.101.Search in Google Scholar PubMed

68. Wang, S., Yu, C., Chen, X., Zhang, K., Gao, H., Yu, X., Zhao, X. X., Fang, L. M., Chen, X. P. Zhang J. ChemistrySelect 2022, 7, e202202764.10.1002/slct.202202764Search in Google Scholar

69. Han, Y., Wang, S., Li, M., Gao, H., Han, M., Yang, H., Fang, L. M., Jagadeesha, A. V., Abd El-Rehim, A. F., Ali, A. M., Li, D. Catal. Sci. Technol. 2023, 13, 2841–2854. https://doi.org/10.1039/D3CY00278K.Search in Google Scholar

70. Yu, C., Wang, S., Zhang, K., Li, M., Gao, H., Zhang, J., Yang, H., Hu, L., Jagadeesha, A. V., Li, D. Opt. Mater. 2023, 135, 113364; https://doi.org/10.1016/j.optmat.2022.113364.Search in Google Scholar

71. Obregón, S., Ruíz-Gómez, M. A., Hernández-Uresti, D. B. J. Colloid Interf. Sci. 2017, 506, 111–119; https://doi.org/10.1016/j.jcis.2017.07.026.Search in Google Scholar PubMed

72. Li, M., Wang, S., Gao, H., Yin, Z., Chen, C., Yang, H., Fang, L. M., Jagadeesha, A. V., Yi, Z., Li, D. J. Am. Ceram. Soc. 2023, 106, 2420–2442; https://doi.org/10.1111/jace.18946.Search in Google Scholar

73. Huo, Q., Liu, G., Sun, H., Fu, Y., Ning, Y., Zhang, B., Liu, S., Gao, J., Miao, J., Zhang, X. Chem. Eng. J. 2021, 422, 130036; https://doi.org/10.1016/j.cej.2021.130036.Search in Google Scholar

74. Yang, X., Zhang, Y., Wang, Y., Xin, C., Zhang, P., Liu, D., Mamba, B. B., Kefeni, K. K., Kuvarega, A. T. Gui J. Chem. Eng. J. 2020, 387, 124100; https://doi.org/10.1016/j.cej.2020.124100.Search in Google Scholar

75. Xiao, Y., Ji, Z., Zou, C., Xu, Y., Wang, R., Wu, J., Jia, T., He, P., Wang, Q. Appl. Surf. Sci. 2021, 556, 149767; https://doi.org/10.1016/j.apsusc.2021.149767.Search in Google Scholar

76. Lai, C., Xu, F., Zhang, M., Li, B., Liu, S., Yi, H., Yan, H., Qin, L., Liu, X., Fu, Y., An, N., Yang, H., Huo, X., Yang, X. J. Colloid Interf. Sci. 2021, 588, 283–294; https://doi.org/10.1016/j.jcis.2020.12.073.Search in Google Scholar PubMed

77. Wang, S., Gao, H., Jin, Y., Chen, X., Wang, F., Yang, H., Fang, L., Chen, X., Tang, S., Li, D. Mater. Today Chem. 2022, 24, 100942; https://doi.org/10.1016/j.mtchem.2022.100942.Search in Google Scholar

Received: 2022-05-12
Accepted: 2023-05-22
Published Online: 2023-06-02
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2022-0072/html
Scroll to top button