Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2017

Rigid polyboxes and keller's conjecture

  • Andrzej P. Kisielewicz EMAIL logo
From the journal Advances in Geometry

Abstract

A cube tiling of ℝd is a family of axis-parallel pairwise disjoint cubes [0,1)d + T = {[0,1)d+t : tT} that cover ℝd. Two cubes [0,1)d + t, [0,1)d + s are called a twin pair if their closures have a complete facet in common. In 1930, Keller conjectured that in every cube tiling of ℝd there is a twin pair. Keller's conjecture is true for dimensions d ≤ 6 and false for all dimensions d ≥ 8. For d = 7 the conjecture is still open. Let x ∈ ℝd, i ∈ [d], and let L(T, x, i) be the set of all ith coordinates ti of vectors tT such that ([0,1)d+t) ∩ ([0,1]d+x) ≠ ø and tixi. Let r(T) = minx∈ℝd max1≤id|L(T,x,i)| and r+(T) = maxx∈ℝd max1≤id|L(T,x,i)|. It is known that Keller's conjecture is true in dimension seven for cube tilings [0,1)7 + T for which r(T) ≤ 2. In the present paper we show that it is also true for d = 7 if r+(T) ≥ 6. Thus, if [0,1)d + T is a counterexample to Keller's conjecture in dimension seven, then r(T), r+(T) ∈ {3, 4, 5}.

MSC 2010: 52C22; 05C69; 94B25; 53C24

J. Lagarias


Acknowledgements

The author would like to thank the reviewer for his valuable comments which helped to improve the paper.

References

[1] N. Alon, T. Bohman, R. Holzman, D. J. Kleitman, On partitions of discrete boxes. Discrete Math. 257 (2002), 255-258. MR1935726 Zbl 1034.5202110.1016/S0012-365X(02)00428-4Search in Google Scholar

[2] K. Corrádi, S. Szabó, A combinatorial approach for Keller’s conjecture. Period. Math. Hungar. 21 (1990), 95-100. MR1070948 Zbl 0718.5201710.1007/BF01946848Search in Google Scholar

[3] K. Corrádi, S. Szabó, Cube tiling and covering a complete graph. Discrete Math. 85 (1990), 319-321. MR1081840 Zbl 0736.0502410.1016/0012-365X(90)90388-XSearch in Google Scholar

[4] J. Debroni, J. D. Eblen, M. A. Langston, W. Myrvold, P. Shor, D. Weerapurage, A complete resolution of the Keller maximum clique problem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, 129-135, SIAM, Philadelphia, PA 2011. MR285711510.1137/1.9781611973082.11Search in Google Scholar

[5] M. Dutour Sikirić, Y. Itoh, Combinatorial cube packings in the cube and the torus. European J. Combin. 31 (2010), 517-534. MR2565344 Zbl 1230.0509110.1016/j.ejc.2009.03.029Search in Google Scholar

[6] M. Dutour Sikirić, Y. Itoh, A. Poyarkov, Cube packings, second moment and holes. European J. Combin. 28 (2007), 715-725. MR2300752 Zbl 1111.5201710.1016/j.ejc.2006.01.008Search in Google Scholar

[7] J. Grytczuk, A. P. Kisielewicz, K. Przesławski, Minimal partitions of a box into boxes. Combinatorica24 (2004), 605-614. MR2096817 Zbl 1080.0500810.1007/s00493-004-0037-4Search in Google Scholar

[8] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter. Math. Z.47 (1941), 427-467. MR0006425 Zbl 0025.25401 JFM 67.0137.0410.1007/BF01180974Search in Google Scholar

[9] O.-H. Keller, Über die lückenlose Erfüllung des Raumes mit Würfeln. J. Reine Angew. Math. 163 (1930), 231-248. MR1581241 JFM 56.1120.0110.1515/crll.1930.163.231Search in Google Scholar

[10] O.-H. Keller, Ein Satz über die lückenlose Erfüllung des 5- und 6-dimensionalen Raumes mit Würfeln. J. Reine Angew. Math. 177 (1937), 61-64. MR1581545 Zbl 0016.05404 JFM 63.0585.0510.1515/crll.1937.177.61Search in Google Scholar

[11] A. P. Kisielewicz, K. Przesławski, Polyboxes, cube tilings and rigidity. Discrete Comput. Geom. 40 (2008), 1-30. MR2429647 Zbl 1147.5200910.1007/s00454-007-9005-2Search in Google Scholar

[12] A. P. Kisielewicz, K. Przesławski, The structure of cube tilings under symmetry conditions. Discrete Comput. Geom. 48 (2012), 777-782. MR2957645 Zbl 1268.5201910.1007/s00454-012-9438-0Search in Google Scholar

[13] M. Kolountzakis, Lattice tilings by cubes: whole, notched and extended. Electron. J. Combin. 5 (1998), Research Paper 14, 11 pp. (electronic). MR1605065 Zbl 0892.5201710.37236/1352Search in Google Scholar

[14] J. C. Lagarias, P. W. Shor, Keller’s cube-tiling conjecture is false in high dimensions. Bull. Amer. Math. Soc. (N.S.) 27 (1992), 279-283. MR1155280 Zbl 0759.5201310.1090/S0273-0979-1992-00318-XSearch in Google Scholar

[15] J. C. Lagarias, P. W. Shor, Cube-tilings of ℝn and nonlinear codes. Discrete Comput. Geom. 11 (1994), 359-391. MR1273224 Zbl 0804.5201310.1007/BF02574014Search in Google Scholar

[16] J. Lawrence, Tiling ℝd by translates of the orthants. In: Convexity and related combinatorial geometry (Norman, Okla., 1980), 203-207, Dekker 1982. MR650314 Zbl 0483.52012Search in Google Scholar

[17] M. Lysakowska, K. Przesławski, On the structure of cube tilings and unextendible systems of cubes in low dimensions. European J. Combin. 32 (2011), 1417-1427. MR2838027 Zbl 1241.5200910.1016/j.ejc.2011.07.003Search in Google Scholar

[18] M. Lysakowska, K. Przesławski, Keller’s conjecture on the existence of columns in cube tilings of ℝn. Adv. Geom. 12 (2012), 329-352. MR2911153 Zbl 1248.5200210.1515/advgeom.2011.055Search in Google Scholar

[19] J. Mackey, A cube tiling of dimension eight with no facesharing. Discrete Comput. Geom. 28 (2002), 275--279. MR1920144 Zbl 1018.5201910.1007/s00454-002-2801-9Search in Google Scholar

[20] H. Minkowski, Diophantische Approximationen. Eine Einführung in die Zahlentheorie. B. G. Teubner, Leipzig 1907. Zbl 38.0220.1510.1007/978-3-663-16055-7Search in Google Scholar

[21] O. Perron, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel. Math. Z. 46 (1940), 1-26. MR0003041 Zbl 0022.2020510.1007/BF01181421Search in Google Scholar

[22] S. K. Stein, S. Szabó, Algebra and tiling , volume 25 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC 1994. MR1311249 Zbl 0930.5200310.5948/UPO9781614440246Search in Google Scholar

[23] S. Szabó, A reduction of Keller’s conjecture. Period. Math. Hungar. 17 (1986), 265-277. MR866636 Zbl 0613.5200610.1007/BF01848388Search in Google Scholar

[24] S. Szabó, Topics in factorization of abelian groups. Birkhäuser 2004. MR2105798 Zbl 1085.2003210.1007/978-93-86279-22-4Search in Google Scholar

Received: 2013-12-26
Revised: 2014-9-12
Revised: 2015-9-12
Published Online: 2017-4-19
Published in Print: 2017-3-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2017-0004/html
Scroll to top button