Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access March 20, 2018

Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

  • Dawei Gao EMAIL logo , Zhenqian Lu , Chunxia Wang , Weiwei Li and Pengyu Dong EMAIL logo
From the journal Autex Research Journal

Abstract

Highly ordered TiO2 nanotube (TiO2 NT) arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT) arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT) arrays were obtained by successive ionic layer adsorption and reaction (SILAR) technique. The samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) emission spectra, ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy (DRS). The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO) under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

References

[1] Eperon G. E., Burlakov V. M., Docampo P., Goriely A., Snaith H.J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24, 151-157.10.1002/adfm.201302090Search in Google Scholar

[2] Mei A., Li X., Liu L., Ku Z., Liu T., Rong Y., Xu M., Hu M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295-8.10.1126/science.1254763Search in Google Scholar PubMed

[3] Xu G., Liu H., Wang J., Lv J., Zheng Z., Wu Y. (2014). Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles. Electrochim. Acta, 121, 194-202.10.1016/j.electacta.2013.12.154Search in Google Scholar

[4] Lan C. S., Leong K. H., Ibrahim S., Saravanan P. (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A, 2, 5315-5322.Search in Google Scholar

[5] Yu D., Zhu X., Xu Z., Zhong X., Gui Q., Song Y. (2014) Facile Method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS App.l Mater. Inter., 6, 8001-8005.Search in Google Scholar

[6] Park H., Lee J., Park T., Lee S., Yi W. (2015). Enhancement of photo-current conversion efficiency in a CdS/CdSe quantum-dot-sensitized solar cell incorporated with single-walled carbon nanotubes. J. Nanosci. Nanotechno., 15, 1614-1617.10.1166/jnn.2015.9319Search in Google Scholar PubMed

[7] Fang-Xing X., Hung S.-F., Miao J., Wang H. Y., Yang H. (2015). Metal-Cluster-Decorated TiO2 Nanotube Arrays: A Composite Heterostructure toward Versatile Photocatalytic and Photoelectrochemical Applications. Small, 11, (5), 554-567.Search in Google Scholar

[8] Kilinc N., sennik E., Isik M., Ahsen A. S., Öztürk O., Öztürk, Z. Z. (2014). Fabrication and gas sensing properties of C-doped and un-doped TiO2, nanotubes. Ceram. Int., 40, (1), 109-115.10.1016/j.ceramint.2013.05.110Search in Google Scholar

[9] 9.. Luo J., Chen J., Wang H., Liu H. (2016). Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting. J. Power. Sources, 303, 726-729.Search in Google Scholar

[10] Chen X., Song Y., Lu L., Cheng C., Liu D., Fang X. (2013). Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res. Lett., 8, (1), 1-7.Search in Google Scholar

[11] Fang X. X., Hung S. F., Miao J., Wang H., Yang H., Liu B. (2015). Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small, 11, 554-567.10.1002/smll.201401919Search in Google Scholar PubMed

[12] Gao Y., Fang P., Chen F., Liu Y., Liu Z. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading [J]. Appl. Surf. Sci., 265, 796-801.10.1016/j.apsusc.2012.11.114Search in Google Scholar

[13] Cheng X., Cheng Q., Li B., Deng X., Li J. (2015). One-step construction of N/Ti3+ co-doped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochim. Acta, 186, :442-448.Search in Google Scholar

[14] Iliev V., Tomova D., Rakovsky S. (2010). Nanosized N-doped TiO2, and gold modified semiconductors-photocatalysts for combined UV-visible light destruction of oxalic acid in aqueous solution[J]. Desalination, 260, (1-3), 101-106.10.1016/j.desal.2010.04.058Search in Google Scholar

[15] Wu R. J., Hsieh Y. C., Hung H. C. (2014). Visible Light Photocatalytic Activity of Pt/N-TiO2 towards Enhanced H2 Production from Water Splitting. J. Chin. Chem. Soc., 61(4), 495–500.10.1002/jccs.201300192Search in Google Scholar

[16] Gao Y., Fang P., Chen F., Liu Y., Liu Z., Wang D. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci., 265, 796-801.10.1016/j.apsusc.2012.11.114Search in Google Scholar

[17] Yang S., Wang H., Yu H., Zhang S., Fang Y. (2016). Zhang S., A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light. Int. J. Hydrogen Energy, 41, 3446-3455.10.1016/j.ijhydene.2015.12.190Search in Google Scholar

[18] Zhang S., Peng F., Wang H., Yu H., Zhang S., Yang J. (2011). Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal. Commun., 12, 689-693.10.1016/j.catcom.2011.01.001Search in Google Scholar

[19] Liang Y., Cui Z., Zhu S., Liu Y., Yang X. (2011). Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J. Catal., 278, 276-287.10.1016/j.jcat.2010.12.011Search in Google Scholar

[20] Liu G., Jaegermann W., He J., Sundström V., Sun L. (2002). XPS and UPS characterization of the TiO2/ZnPcGly heterointerface: alignment of energy levels. J. Phys. Chem. B, 106, 5814-5819.10.1021/jp014192bSearch in Google Scholar

[21] Yuan Y., Ding J., Xu J., Deng J., Guo J. (2010). TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J. Nanosci. Nanotechno., 10, 4868-4874.10.1166/jnn.2010.2225Search in Google Scholar PubMed

[22] Peng F., Cai L. F., Yu H., Wang H., Yang J. (2008). Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid. State Chem., 181, 130-136.10.1016/j.jssc.2007.11.012Search in Google Scholar

[23] Antony R. P., Mathews T., Panda K. (2012). Enhanced Field Emission Properties of Electrochemically Synthesized Self-Aligned Nitrogen-Doped TiO2 Nanotube Array Thin Films. J. Phys. Chem. C, 116(31):16740-16746.Search in Google Scholar

[24] Yu J. G., Xiong J. F., Cheng B., Liu S. (2005). Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B-Environ., 60, 211-221.10.1016/j.apcatb.2005.03.009Search in Google Scholar

[25] Gao Y., Fang P., Chen F., Liu Y., Liu Z. (2013). Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl. Surf. Sci., 265, 796-801.10.1016/j.apsusc.2012.11.114Search in Google Scholar

[26] Sun T.; Fan J.; Liu E.; Liu L.; Wang Y.; Dai H. (2012). Fe and Ni co-doped TiO2, nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol., 228, 210-218.10.1016/j.powtec.2012.05.018Search in Google Scholar

[27] Niishiro R., Kato H., Kudo A. (2005). Nickel and either titanium or niobium co-doped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. P. C. C. P., 7, 2241-2245.Search in Google Scholar

[28] Zhang S., Peng F., Wang H., Yu H., Zhang S. (2011). Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catalysis Communications, 12, (8), 689-693.10.1016/j.catcom.2011.01.001Search in Google Scholar

[29] Song X., Gao L. (2007). Synthesis, characterization, and optical properties of well-defined N-doped, hollow silica/titania hybrid microspheres. Langmuir, 23, (23), 11850-11856.10.1021/la7019704Search in Google Scholar PubMed

[30] Yang S., Wang H., Yu H., Zhang S., Fang Y. (2016). A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light. Int. J. Hydrogen Energy, 41, (5), 3446-3455.10.1016/j.ijhydene.2015.12.190Search in Google Scholar

[31] Lan M., Zhang Y., Wang P. N. (2008). First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2. Chem. Phys. Lett., 458, 341-345.10.1016/j.cplett.2008.04.124Search in Google Scholar

[32] Dong P., Wang Y., Cao B., Xin S., Guo L.(2013). Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl. Catal. B Environmental, 132-133, (9), 45-53.10.1016/j.apcatb.2012.11.022Search in Google Scholar

[33] Zhang Q., Wang L., Feng J., Xu H., Yan W. (2014). Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays. Phys. Chem. Chem. Phys., 16, (42), 23431-23439.10.1039/C4CP02967DSearch in Google Scholar PubMed

Published Online: 2018-3-20
Published in Print: 2018-3-1

© 2017 Dawei Gao et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/aut-2017-0005/html
Scroll to top button