Skip to main content
Log in

Unveiling the kinematics of the avoidance response in maize (Zea mays) primary roots

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Living roots grow in soil, which is a heterogeneous environment containing a wide variety of physical barriers. Roots must avoid these barriers to grow: first, they adopt a characteristic S-shape that can be described by the angle between the root tip and the barrier (i.e., the tip-to-barrier angle); then, they move parallel to the barrier by keeping the sensitive tip in contact with the barrier until it has been circumvented. We investigated this avoidance response in the primary roots of maize (Zea mays) by considering flat barriers oriented at 45, 60 and 90 degrees with respect to the gravity vector.

We measured the root tip orientation during growth by using time-lapse imaging and specially developed tip-tracking software (9 trials for each value of the barrier orientation). Remarkably, we found that the S-shapes formed by the roots were characterized by the same tip-to-barrier angle regardless of the barrier orientation: namely, 21.96 ± 2.97, 21.48 ± 4.75 and 20.81 ± 9.39 degrees for barriers oriented at 45, 60 and 90 degrees, respectively. We also considered the root growth after bypassing the barrier; for the barrier at 90 degrees, we observed a gravitropic recovery. Furthermore, we used a mathematical model to quantify the characteristic time of S-shape formation (95 min on average) and gravitropic recovery (approximately 42 min); the obtained values are consistent with those of previous studies.

Our results suggest that the avoidance response develops with respect to a reference frame associated with the barrier. From a biological viewpoint, the reason the root adopts the specifically observed tip-to-barrier angle is unclear, but we speculate that maize root optimizes energy expenditure during the penetration of a medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asl F.M. & Galip Ulsoy A. 2003. Analysis of a system of linear delay differential equations. ASME J. Dyn. Syst., Measure. Control 125: 215–223.

    Article  Google Scholar 

  • Band L.R., Wells D.M., Larrieu A., Sun J., Middleton A.M., French A.P. et al. 2012. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl. Acad. Sci. USA 109: 4668–4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastien R., Bohr T., Moulia B. & Douady S. 2013. Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proc. Natl. Acad. Sci. USA 110: 755–60.

    Article  CAS  PubMed  Google Scholar 

  • Braam J. 2005. In touch: plant responses to mechanical stimuli. New Phytol. 165: 373–89.

    Google Scholar 

  • Burbach C., Markus K., Zhang Y., Schlicht M. & Baluska F. 2012. Photophobie behavior of maize roots. Plant Signal. Behav. 7: 874–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehab E.W., Eich E. & Braam J. 2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. J. Exp. Bot. 60: 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Coutand C. 2010. Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view. Plant Sci. 179: 168–182.

    Article  CAS  Google Scholar 

  • Darwin C. & Darwin F. 1897. The power of movement in plants. Appleton.

    Google Scholar 

  • Digby J. & Firn R.D. 1995. The gravitropic set-point angle (GSA): the identification of an important develop mentally controlled variable governing plant architecture. Plant Cell Environ. 18: 1434–1440.

    Article  CAS  PubMed  Google Scholar 

  • Driver R.D. 1977. Ordinary and Delay Differential Equations, New York, NY: Springer New York.

    Book  Google Scholar 

  • Eapen D., Barroso M.L., Ponce G., Campos M.E., Cassab G.I. 2005. Hydrotropism: root growth responses to water. Trends Plant Sci. 10: 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Esmon C.A., Pedmale U.V. & Liscum E. 2005. Plant tropisms: Providing the power of movement to a sessile organism. Inter. J. Develop. Biol. 49: 665–674.

    Article  CAS  Google Scholar 

  • Evans M. 2003. Touch sensitivity in plants: be aware or beware. Trends Plant Sci. 8: 312–314.

    Article  CAS  PubMed  Google Scholar 

  • Evans M.L. 1991. Gravitropism: Interaction of sensitivity modulation and effector redistribution. Plant Physiol. 95: 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano J.M., Massa G.D. & Gilroy S. 2002. Ionic signaling in plant responses to gravity and touch. J. Plant Growth Reg. 21: 71–88.

    Article  CAS  Google Scholar 

  • Firn R.D. & Digby J. 1997. Solving the puzzle of gravitropism - has a lost piece been found? Planta 203(S1): S159-S163.

    Google Scholar 

  • Giehl R., Lima J.E. & von Wiren N. 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUXl-mediated auxin distribution. Plant Cell 24: 33–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S. 2008. Plant tropisms. Curr. Biol. 18: 275–277.

    Article  CAS  Google Scholar 

  • Goss M.J. & Russell R.S. 1980. Effects of mechanical impedance on root growth in barley (Hordeum, vulgare L.). J. Exp. Bot. 31: 577–588.

    Article  Google Scholar 

  • Hahn A., Firn R. & Edelmann H.G. 2006. Interacting signal transduction chains in gravity-stimulated maize roots. Signal Transd. 6: 449–455.

    Article  CAS  Google Scholar 

  • Iino M., Tarui Y. & Uematsu C. 1996. Gravitropism of maize and rice coleoptiles: dependence on the stimulation angle. Plant, Cell, Environ. 19: 1160–1168.

    Article  CAS  Google Scholar 

  • Ishikawa H. & Evans M.L. 1992. Induction of curvature in maize roots by calcium or by thigmostimulation: Role of the postmitotic isodiametric growth zone. Plant Physiol. 100: 762–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelsson D. & Johnsson A. 1967. A theory for circumnutations in Helianthus annuus. Physiol. Plant. 20: 957–976.

    Article  Google Scholar 

  • Jin K. Shen J., Ashton, R.W., Dodd I.C., Parrz M.A.J. & Whalley W.R. 2013. How do roots elongate in a structured soil? J. Exp. Bot. 64: 4761–4777.

    Article  CAS  PubMed  Google Scholar 

  • Leitz G. et al. 2009. Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21: 843–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold A.C. & Wettlaufer S.H. 1989. Springback in root gravitropism. Plant Physiol. 91: 1247–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massa G.D. & Gilroy S. 2003a. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots. Adv. Space Res. 31: 2195–2202.

    Article  CAS  PubMed  Google Scholar 

  • Massa G.D. & Gilroy S. 2003b. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J. 33: 435–445.

    Article  PubMed  Google Scholar 

  • Mazzolai B., Mondini A., Corradi P. & Laschi C. 2011. A miniaturized mechatronic system inspired by plant roots for soil exploration. IEEE/ASME Transactions on Mechatronics 16: 201–212.

    Google Scholar 

  • McCully M.E. 1999. Roots in soil: Unearthing the complexities of roots and their rhizospheres. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 695–718.

    CAS  Google Scholar 

  • Meskauskas A., Moore D. & Frazer L.N. 1998. Mathematical modelling of morphogenesis in fungi: spatial organization of the gravitropic response in the mushroom stem of Coprinus cinereus. New Phytol. 140: 111–123.

    Article  CAS  PubMed  Google Scholar 

  • MoM, Yokava K., Wan Y. & Baluška F. 2015. How and why do root apices sense light under the soil surface? Front. Plant Sci. 6: 775.

    Google Scholar 

  • Monshausen G.B. & Gilroy S. 2009. Feeling green: mechanosens-ing in plants. Trends Cell Biol. 19: 228–35.

    Article  PubMed  Google Scholar 

  • Monshausen G.B., Bibibkova T.N., Weisenseel M.H. & Gilroy S. 2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21: 2341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulia B. & Fournier M. 2009. The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J. Exp. Bot. 60: 461–86.

    Article  CAS  PubMed  Google Scholar 

  • Nelson A.J. & Evans M.L. 1986. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer. J. Plant Growth Reg. 5: 73–83.

    Article  CAS  Google Scholar 

  • Perbal G., Jeune B., Lefranc A., Carnero-Diaz E. & Driss-Ecole D. 2002. The dose-response curve of the gravitropic reaction: a re-analysis. Physiol. Plant. 114: 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Popova L., Russino A., Ascrizzi A. & Mazzolai B. 2012. Analysis of movement in primary maize roots. Biologia 67: 517–524.

    Article  Google Scholar 

  • Russino A., Ascrizzi A., Popova L., Tonazzini A., Mancuso S. & Mazzolai B. 2013. A novel tracking tool for the analysis of plant-root tip movements. Bioinspir. Biomim. 8(2): 025004.

    Article  CAS  PubMed  Google Scholar 

  • Sachs J. 1887. Vorlesungen über Pflanzenphysiologie. Würzburg 1882. Engl, transln.: Lectures on the physiology of plants. Clarendon Press, Oxford.

    Chapter  Google Scholar 

  • Sadeghi A., Tonazzini A., Popova L. & Mazzolai B. 2013. Innovative Robotic Mechanism for Soil Penetration Inspired by Plant Roots, pp. 3457–3463. In: Proceedings in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany.

    Google Scholar 

  • Sadeghi A., Tonazzini A., Popova L. & Mazzolai B. 2014. A novel growing device inspired by plant root soil penetration behaviors. PloS one 9(2): e90139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svistoonoff S. Creff A., Reymond M., Sigoillot-Claude C., Ri-caud L., Blanchet A., Nussaume L. & Desnos T. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nat. Genet. 39: 792–796.

    Article  CAS  PubMed  Google Scholar 

  • Weerasinghe R., Swanson S. & Okada S. 2009. Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett. 583: 2521–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokawa K., Kagenishi T. & Baluska F. 2013. Root photomor-phogenesis in laboratory-maintained Arabidopsis seedlings. Trends Plant Sci. 18: 117–119.

    Article  CAS  PubMed  Google Scholar 

  • Yokawa K. Fasano R., Kagenishi T. & Baluška F. 2014. Light as stress factor to plant roots - case of root halotropism. Front. Plant Sci. 5: 718.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zieschang H.E., Brain P. & Barlow P.W. 1997. Modelling of root growth and bending in two dimensions. J. Theoret. Biol. 184: 237–246.

    Article  CAS  Google Scholar 

  • Zou N., Li B., Dong G., Kronzucer H.J. & Shi W. 2012. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis. J. Exp. Bot. 63: 3777–3788.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Future and Emerging Technologies (FET) programme within the Seventh Framework Program for Research of the European Commission, under FET-Open grant number 293431.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edoardo Sinibaldi or Barbara Mazzolai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, L., Tonazzini, A., Di Michele, F. et al. Unveiling the kinematics of the avoidance response in maize (Zea mays) primary roots. Biologia 71, 161–168 (2016). https://doi.org/10.1515/biolog-2016-0022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0022

Key words

Navigation