Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 19, 2013

Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

  • Richard Mathew Ferguson , Amit P. Khandhar , Hamed Arami , Loc Hua , Ondrej Hovorka and Kannan M. Krishnan EMAIL logo

Abstract

Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles’ physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist.


Corresponding author: Kannan M. Krishnan, Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195, USA, E-mail:

This work was supported by NIH grants 1R01EB013689-01/NIBIB and 1R41EB013520-01, NSF grant IIP-1215556, a UW/CGF commercialization grant and a Commercialization Fellowship (RMF).

References

[1] Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1–16.10.1146/annurev-bioeng-071811-150124Search in Google Scholar PubMed

[2] Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5: 505–515.10.1021/mp800051mSearch in Google Scholar PubMed PubMed Central

[3] Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011; 6: 815–835.10.2217/nnm.11.79Search in Google Scholar PubMed

[4] Arami H, Krishnan KM. Highly stable amine functionalized iron oxide nanoparticles designed for magnetic particle imaging (MPI). IEEE Trans Magnet. 2013; 49(7).10.1109/TMAG.2013.2245110Search in Google Scholar PubMed PubMed Central

[5] Arami H, Ferguson RM, Khandhar AP, Krishnan KM. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med Phys 2012; 3: 267–268.Search in Google Scholar

[6] Arami H, Stephen Z, Veiseh O, Zhang M. Chitosan-coated iron oxide nanoparticles for molecular imaging and drug delivery. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Advances in polymer science, Chitosan for biomaterials I. Berlin: Springer 2011: 163–184.10.1007/12_2011_121Search in Google Scholar

[7] Bertotti G. Hysteresis in magnetism: for physicists, materials scientists, and engineers. 1st ed. San Diego, CA: Academic Press 1998.Search in Google Scholar

[8] Biederer S, Sattel T, Knopp T, et al. A spectrometer to measure the usability of nanoparticles for magnetic particle imaging. In: Buzug TM, Borgert J, Knopp T, Biederer S, Sattel T, Erbe M, Lüdtke-Buzug K, editors. Magnetic nanoparticles: particle science, imaging technology, and clinical applications. Singapore: World Scientific 2010: 60–65.10.1142/9789814324687_0008Search in Google Scholar

[9] Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 2011; 109: 083921.10.1063/1.3551582Search in Google Scholar

[10] Chikazumi S. Physics of magnetism. New York: Wiley 1964.Search in Google Scholar

[11] Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 2011; 32: 2183–2193.10.1016/j.biomaterials.2010.11.040Search in Google Scholar PubMed PubMed Central

[12] Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011; 98: 182502.10.1063/1.3586776Search in Google Scholar

[13] Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys 2012; 111: 07B318.10.1063/1.3676053Search in Google Scholar PubMed PubMed Central

[14] Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011; 38: 1619–1626.10.1118/1.3554646Search in Google Scholar PubMed PubMed Central

[15] Frenkel J. Kinetic theory of liquids. New York: Dover 1955.Search in Google Scholar

[16] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.10.1038/nature03808Search in Google Scholar PubMed

[17] Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 2010; 29: 1851–1859.10.1109/TMI.2010.2052284Search in Google Scholar PubMed

[18] Goodwill P, Conolly S. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging 2011; 30: 1581–1590.10.1109/TMI.2011.2125982Search in Google Scholar PubMed PubMed Central

[19] Goodwill PW, Saritas EU, Croft LR, et al. X‐space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 2012; 24: 3870–3877.10.1002/adma.201200221Search in Google Scholar PubMed

[20] Goodwill PW, Tamrazian A, Croft LR, et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Appl Phys Lett 2011; 98: 262502–262502.10.1063/1.3604009Search in Google Scholar

[21] Hua L, Ferguson RM, Hovorka O, Chantrell RW, Krishnan KM. Simulations of MPI tracer performance using a kinetic Monte Carlo method. Proceedings of International Workshop on magnetic particle imaging 2013. IEEE Xplore. Accepted for publication10.1109/IWMPI.2013.6528374Search in Google Scholar

[22] Huong NT, Giang LTK, Binh NT, Minh LQ. Surface modification of iron oxide nanoparticles and their conjugation with water soluble polymers for biomedical application. J Phys Conf Ser 2009; 187: 012046.10.1088/1742-6596/187/1/012046Search in Google Scholar

[23] Khandhar AP, Ferguson RM, Arami H, Krishnan KM. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 2013; 34: 3837–3845.10.1016/j.biomaterials.2013.01.087Search in Google Scholar PubMed PubMed Central

[24] Khandhar AP, Ferguson RM, Simon JA, Krishnan KM. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 2012; 100: 728–737.10.1002/jbm.a.34011Search in Google Scholar PubMed PubMed Central

[25] Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 2010; 46: 2523–2558.10.1109/TMAG.2010.2046907Search in Google Scholar PubMed PubMed Central

[26] Löwa N, Eberbeck D, Steinhoff U, Wiekhorst F, Trahms L. Potential of improving MPI performance by magnetic separation. In: Buzug TM, Borgert J, editors. Springer proceedings in physics. Berlin: Springer 2012: 73–78.10.1007/978-3-642-24133-8_12Search in Google Scholar

[27] Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 2010; 85: 315–319.10.1002/ajh.21656Search in Google Scholar PubMed

[28] Narayanan J, Xiong J-Y, Liu X-Y. Determination of agarose gel pore size: absorbance measurements vis a vis other techniques. J Phys: Conf Ser 2006; 28: 83–86.10.1088/1742-6596/28/1/017Search in Google Scholar

[29] Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009; 9: 4.10.1186/1471-2342-9-4Search in Google Scholar PubMed PubMed Central

[30] Rahmer J, Weizenecker J, Gleich B, Borgert J. Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imaging 2012; 31: 1289–1299.10.1109/TMI.2012.2188639Search in Google Scholar PubMed

[31] Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 2003; 13: 1266–1276.10.1007/s00330-002-1721-7Search in Google Scholar PubMed

[32] Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2010; 2: 14.10.1186/2040-2384-2-14Search in Google Scholar PubMed PubMed Central

[33] Schmale I, Rhamer J, Gleich B, Borgert J, Weizenecker J. Point spread function analysis of magnetic particles. In: Buzug TM, Borgert J, editors. Magnetic particle imaging, Springer proceedings in physics 140. Berlin: Springer-Verlag 2012: 287–292.10.1007/978-3-642-24133-8_46Search in Google Scholar

[34] Shliomis MI. Magnetic fluids. Soviet Physics Uspekhi 1974; 17: 153–169.10.1070/PU1974v017n02ABEH004332Search in Google Scholar

[35] Stoner EC, Wohlfarth EP. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond Ser A Math Phys Sci 1948; 240: 599–642.Search in Google Scholar

[36] Usov NA, Liubimov BY. Dynamics of magnetic nanoparticle in a viscous liquid: application to magnetic nanoparticle hyperthermia. J Appl Phys 2012; 112: 023901.10.1063/1.4737126Search in Google Scholar

[37] Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron-oxide – characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175: 489–493.10.1148/radiology.175.2.2326474Search in Google Scholar PubMed

[38] Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989; 152: 167.10.2214/ajr.152.1.167Search in Google Scholar PubMed

[39] Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1–L10.10.1088/0031-9155/54/5/L01Search in Google Scholar PubMed

[40] Weizenecker J, Gleich B, Rahmer J, Borgert J. Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles. Phys Med Biol 2012; 57: 7317–7327.10.1088/0031-9155/57/22/7317Search in Google Scholar PubMed

[41] Wen T, Krishnan KM. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D Appl Phys 2011; 44: 393001.10.1088/0022-3727/44/39/393001Search in Google Scholar

Received: 2013-1-30
Accepted: 2013-5-13
Published Online: 2013-06-19
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2012-0058/html
Scroll to top button