Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2015

A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate

  • Ming-Feng Song , Zhong-Fang Li EMAIL logo , Guo-Hong Liu , Su-Wen Wang , Xiao-Yan Yin and Yu-Xin Wang
From the journal Chemical Papers

Abstract

Lanthanum sulfophenyl phosphate (LaSPP) was synthesized by m-sulfophenyl phosphonic acid and lanthanum nitrate. UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy indicate that the desired product was obtained and its elementary composition and typical layered structure were determined by energy dispersive X-ray spectroscopy and scanning electron microscopy. Transmission electron microscopy (TEM) proved its typical layered structure and X-ray diffraction spectroscopy indicated its good crystallinity and the interlayer distance of about 15.67 Å , which matches the value obtained by TEM (2.0 nm). Thermogravimetry and differential thermal analysis revealed good thermal stability of LaSPP. Proton conductivity of LaSPP was measured at different temperatures and relative humidities (RH), reaching values of 0.123 S cm-1 at 150°C and 100 % RH. Proton transfer activation energy was 22.52 kJ mol-1. At 160°C and 50 % RH, the conductivity was 0.096 S cm-1. In the drying oven, the conductivity retained the value of 1.118 × 10-2 S cm-1. The results show that LaSPP is a highly effective inorganic-organic conductor.

References

Ahmad, M. I., Zaidi, S. M. J., Rahman, S. U., & Ahmed, S. (2006). Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Microporous and Mesoporous Materials, 91, 296-304. DOI: 10.1016/j.micromeso.2005.10.029.10.1016/j.micromeso.2005.10.029Search in Google Scholar

Aili, D., Hansen, M. K., Pan, C., Li, Q. F., Christensen, E., Jensen, J. O., & Bjerrum, N. J. (2011). Phosphoric acid doped membranes based on Nafion®, PBI and their blends - Membrane preparation, characterization and steam electrolysis testing. International Journal of Hydrogen Energy, 36, 6985-6993. DOI: 10.1016/j.ijhydene.2011.03.058.10.1016/j.ijhydene.2011.03.058Search in Google Scholar

Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., & Sganappa, M. (2007). Novel Nafion- zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochimica Acta, 52, 8125-8132. DOI: 10.1016/j.electacta.2007.07.019.10.1016/j.electacta.2007.07.019Search in Google Scholar

Amirinejad, M., Madaeni, S. S., Rafiee, E., & Amirinejad, S. (2011). Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells. Journal of Membrane Science, 377, 89-98. DOI: 10.1016/j.memsci.2011.04.014.10.1016/j.memsci.2011.04.014Search in Google Scholar

Amirinejad, M., Madaeni, S. S., Lee, K. S., Ko, U., Rafiee, E., & Lee, J. S. (2012). Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells. Electrochimica Acta, 62, 227-233. DOI: 10.1016/j.electacta.2011.12.025.10.1016/j.electacta.2011.12.025Search in Google Scholar

Colomer, M. T. (2006). Nanoporous anatase thin films as fast proton-conducting materials. Advanced Materials, 18, 371-374. DOI: 10.1002/adma.200500689.10.1002/adma.200500689Search in Google Scholar

Colomer, M. T., & Zenzinger, K. (2012). Mesoporous α-Fe2O3 membranes as proton conductors: Synthesis by microwaveassisted sol-gel route and effect of their textural characteristics on water uptake and proton conductivity. Microporous and Mesoporous Materials, 161, 123-133. DOI: 10.1016/j.micromeso.2012.05.009.10.1016/j.micromeso.2012.05.009Search in Google Scholar

Cui, Z. M., Xing, W., Liu, C. P., Liao, J. H., & Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188, 24-29. DOI: 10.1016/j.jpowsour.2008.11.108.10.1016/j.jpowsour.2008.11.108Search in Google Scholar

Dong, F. L., Li, Z. F., & Wang, Z. H. (2011a). Cerium sulfonphenyl phosphate, a novel inorgano-organic solid proton- conducting material. Materials Letters, 65, 1431-1433. DOI: 10.1016/j.matlet.2011.02.024.10.1016/j.matlet.2011.02.024Search in Google Scholar

Dong, F. L., Li, Z. F., Wang, S. W., Xu, L. J., & Yu, X. J. (2011b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/ PTFE composite membranes. International Journal of Hydrogen Energy, 36, 3681-3687. DOI: 10.1016/j.ijhydene.2010.12.014.10.1016/j.ijhydene.2010.12.014Search in Google Scholar

Dong, F. L., Li, Z. F., Wang, S. W., & Wang, Z. H. (2011c). Synthesis and characteristics of proton-conducting membranes based on cerium sulfonphenyl phosphate and poly (2,5-benzimidazole) by hot-pressed method. International Journal of Hydrogen Energy, 36, 11068-11074. DOI: 10.1016/j.ijhydene.2011.05.128.10.1016/j.ijhydene.2011.05.128Search in Google Scholar

Jin, L., Li, Z. F., Wang, S. W., Wang, Z. H., Dong, F. L., & Yin, X. Y. (2012). Highly conductive proton exchange membranes based on sulfonated poly(phthalazinone ether sulfone) and cerium sulfophenyl phosphate. Reactive & Functional Polymers, 72, 549-555. DOI: 10.1016/j.reactfunctpolym.2012.05. 007.Search in Google Scholar

Kozhevnikov, I. V. (2007). Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical, 262, 86-92. DOI: 10.1016/j.molcata.2006.08.072.10.1016/j.molcata.2006.08.072Search in Google Scholar

Li, Z. F., Dong, F. L., Xu, L. J.,Wang, S. V., & Yu, X. J. (2010). Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells. Journal of Membrane Science, 351, 50-57. DOI: 10.1016/j.memsci.2010.01.027.10.1016/j.memsci.2010.01.027Search in Google Scholar

Liu, G. H., Li, Z. F., Jin, L., & Wang, S. W. (2014). Synthesis of ironIII sulfophenyl phosphate nanosheets as a high temperature inorganic-organic proton conductor. Ionics, 20, 1399-1406. DOI: 10.1007/s11581-014-1109-0.10.1007/s11581-014-1109-0Search in Google Scholar

Montoneri, E., Gallazzi, M. C., & Grassi, M. (1989). Organosulphur phosphorus acid compounds. Part 1. m-Sulphophenylphosphonic acid. Journal of the Chemical Society, Dalton Transactions, 1989, 1819-1823. DOI: 10.1039/dt9890001819.10.1039/dt9890001819Search in Google Scholar

Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36, 1443-1498. DOI: 10.1016/j.progpolymsci.2011.06.001.10.1016/j.progpolymsci.2011.06.001Search in Google Scholar

Ponomareva, V. G., Lavrova, G. V., & Hairetdinov, E. F. (1997). Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sensors and Actuators B: Chemical, 40, 95-98. DOI: 10.1016/s0925-4005(97)80246-8.10.1016/S0925-4005(97)80246-8Search in Google Scholar

Poonjarernsilp, C., Sano, N., & Tamon, H. (2014). Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis B: Environmental, 147, 726-732. DOI: 10.1016/j.apcatb.2013.10.006.10.1016/j.apcatb.2013.10.006Search in Google Scholar

Qin, Q., Tang, Q. W., Li, Q. H., He, B. L., Chen, H. Y., Wang, X., & Yang, P. Z. (2014). Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 39, 4447-4458. DOI: 10.1016/j.ijhydene.2013.12.205.10.1016/j.ijhydene.2013.12.205Search in Google Scholar

Timofeeva, M. N. (2003). Acid catalysis by heteropoly acids. Applied Catalysis A: General, 256, 19-35. DOI: 10.1016/ s0926-860x(03)00386-7.10.1016/S0926-860X(03)00386-7Search in Google Scholar

Tong, X., Wu, W., Wu, Q. Y., Cao, F. H., Yan, W. F., & Yaroslavtsev, A. B. (2013). Proton conducting composite materials containing heteropoly acid and matrices. Materials Chemistry and Physics, 143, 355-359. DOI: 10.1016/j.matchemphys.2013.09.009.10.1016/j.matchemphys.2013.09.009Search in Google Scholar

Urban, J., Havliček, D., & Krajbich, J. (2015). Preparation of quaternary pyridinium salts as possible proton conductors. Chemical Papers, 69, 448-455. DOI: 10.1515/chempap-2015-0037.10.1515/chempap-2015-0037Search in Google Scholar

Wang, S. W., Dong, F. L., & Li, Z. F. (2012a). Protonconducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability. Journal of Materials Science, 47, 4743-4749. DOI: 10.1007/s10853-012-6350-1.10.1007/s10853-012-6350-1Search in Google Scholar

Wang, S. W., Dong, F. L., Li, Z. F., & Jin, L. (2012b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/tungsten oxide composite membranes. Asia- Pacific Journal of Chemical Engineering, 7, 528-533. DOI: 10.1002/apj.603. 10.1002/apj.603Search in Google Scholar

Received: 2015-4-4
Revised: 2015-9-17
Accepted: 2015-9-17
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0219/html
Scroll to top button